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Abstract— Protecting sensitive data, such as medical records, necessitates privacy-

preserving data sharing in decentralized systems. This abstract delves into the fusion of 

Differential Privacy (DP) and Advanced Encryption Standard (AES) encryption methods 

to fortify data security. AES encryption is pivotal in transforming medical records into an 

unintelligible format accessible onl1y with the correct decryption key, ensuring data 

confidentiality. Simultaneously, DP introduces an additional layer of privacy by injecting 

noise into query responses, thwarting the extraction of personal data while enabling 

insightful analysis. 

This approach safeguards patient privacy while preserving data utility for healthcare 

research and analysis in decentralized systems by amalgamating DP and AES encryption. 

The proposed methodology offers a pragmatic solution to the intricate conundrum of 

balancing data sharing and privacy, guaranteeing the integrity and confidentiality of 

private health information in decentralized settings. This framework serves as a 

foundational pillar for secure and ethical healthcare practices in the digital era, adept at 

addressing the evolving challenges associated with data sharing while upholding privacy. 
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Introduction: 

Healthcare systems are increasingly gravitating towards decentralized architectures for data 

sharing to augment accessibility and scalability while upholding patient privacy and 

security. Nonetheless, decentralized systems present formidable challenges in safeguarding 

the confidentiality of sensitive patient health records due to the distributed nature of data 

storage and processing. Traditional encryption methods alone may prove inadequate in 

warding off privacy breaches, particularly in scenarios where adversaries can deduce 

sensitive information from encrypted data patterns. Differential Privacy (DP) emerges as a 

promising solution by introducing noise into data to obviate the inference of individual 

records while preserving overall data utility. In this paper, we introduce a pioneering 

approach that merges Advanced Encryption Standard (AES) encryption with Differential 

Privacy techniques to attain robust privacy-preserving data sharing in decentralized 

healthcare environments. 

1.1 Background and Motivation: 

The rapid digitization of healthcare records has ushered in an era of unprecedented data 

sharing and accessibility. However, alongside these advancements, concerns regarding the 

privacy and  
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security of patient health records have intensified. Traditional centralized systems, while 

effective in many respects, are susceptible to single points of failure and unauthorized 

access. Decentralized systems offer a compelling alternative, leveraging distributed 

architectures to mitigate these risks while enhancing scalability and resilience. Nonetheless, 

the decentralized nature of these systems presents unique challenges in preserving the 

confidentiality of sensitive healthcare data. 

 

1.2 Challenges in Decentralized Systems: 

Decentralized systems, characterized by their distributed nature, pose significant 

challenges in maintaining the privacy and security of patient health records. Key challenges 

include ensuring end-to-end encryption, preventing unauthorized access, and preserving 

data integrity in a distributed environment. Moreover, achieving these objectives without 

compromising data utility and system performance adds further complexity to the problem. 

 

1.3 The Role of AES Encryption and Differential Privacy: 

In addressing these challenges, the fusion of Advanced Encryption Standard (AES) 

encryption and Differential Privacy (DP) emerges as a promising solution. AES encryption, 

a widely adopted cryptographic algorithm, provides robust data confidentiality by 

encrypting sensitive information using a symmetric key. On the other hand, Differential 

Privacy offers a rigorous framework for privacy preservation, focusing on adding 

controlled noise to aggregated query results to prevent the inference of individual records. 

    

2. Review of Existing Techniques: 

2.1 Homomorphic Encryption: 

Homomorphic encryption allows computations to be performed on encrypted data without 

decrypting it first. While offering strong privacy guarantees, homomorphic encryption can 

be computationally intensive and may not be suitable for all use cases, particularly those 

requiring real-time data processing. 

 

2.2 Secure Multiparty Computation: 

Secure multiparty computation enables multiple parties to jointly compute a function over 

their inputs while keeping these inputs private. While offering strong privacy guarantees, 

secure multiparty computation can be complex to implement and may incur significant 

computational overhead. 

 

2.3 Limitations of Current Approaches: 

Despite their strengths, existing techniques such as homomorphic encryption and secure 

multiparty computation face challenges in terms of scalability, performance, and usability. 

These limitations underscore the need for innovative approaches that strike a balance 

between privacy protection and practicality in decentralized healthcare systems. 

 

3. Methodology: 

To realize our proposed approach, we first encrypt patient health records using AES 

encryption to ensure data confidentiality. AES encryption transforms the records into an 

encrypted format accessible solely with the appropriate decryption key, thereby 

safeguarding patient privacy. Subsequently, we integrate Differential Privacy techniques 

by adding noise to query responses, thereby preventing the extraction of personal data 
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while facilitating insightful analysis. By combining AES encryption with Differential 

Privacy, our methodology strikes a delicate balance between privacy preservation and data 

utility, offering a pragmatic solution for privacy-preserving data sharing in decentralized 

healthcare systems. 

 

This methodological approach not only enhances the security of patient health records but 

also ensures the integrity and confidentiality of sensitive data in decentralized 

environments. It serves as a cornerstone for fostering trust among patients, healthcare 

providers, and researchers, laying the groundwork for secure and ethical healthcare 

practices in the digital age. 

 

3.1 Overview of AES Encryption: 

AES encryption operates on blocks of data using symmetric keys, providing robust 

confidentiality through substitution and permutation operations. The choice of key size and 

encryption mode plays a crucial role in determining the security of the encrypted data. 

 

3.2 Integration of Differential Privacy with AES Encryption: 

The integration of Differential Privacy with AES encryption involves applying noise to 

aggregated query results to achieve privacy guarantees while preserving data utility. 

Differential Privacy parameters, including the privacy budget and sensitivity, are carefully 

calibrated to achieve the desired level of privacy without compromising data accuracy. 

 

3.3 Technical Details of the Proposed Approach: 

Our proposed approach involves encrypting patient health records using AES encryption 

before sharing them in a decentralized environment. To incorporate Differential Privacy, 

noise is added to query responses to prevent adversaries from inferring sensitive 

information about individual records. The choice of noise distribution and magnitude is 

guided by Differential Privacy parameters and the specific requirements of the healthcare 

application. 

 

4. Implementation Details: 

4.1 Decentralized System Architecture: 

We utilize a decentralized system architecture based on blockchain technology to facilitate 

secure and transparent data sharing among healthcare stakeholders. Each participant in the 

network maintains a local copy of the encrypted data and performs computations locally to 

ensure data privacy. 

 

4.2 AES Encryption and Decentralized Data Storage: 

Patient health records are encrypted using AES encryption with a securely generate 

symmetric key before being stored in the decentralized network. Encryption and decryption 

operations are performed locally by authorized users, ensuring end-to-end data 

confidentiality. 

 

4.3 Differential Privacy Mechanisms: 

To incorporate Differential Privacy, noise is added to aggregated query results to prevent 

the inference of individual records. We employ state-of-the-art DP mechanisms, such as 

Laplace noise, tailored to the specific requirements of healthcare data sharing. 
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centralized organizations have a history of abusing user data. 

 

Python Code: 

# Compute statistics after applying differential privacy 

noisy_statistics = {} 

for column, data in encrypted_data.items(): 

if df[column].dtype in ['int64', 'float64']: 

plaintext= pd.read_json(decrypt_data(data['ciphertext'], data['nonce'], key).decode(), 

orient='index') 

sensitivity = 1  # Sensitivity of the function (for computing statistics) 

noisy_data = pd.DataFrame() 

for col in plaintext.columns: 

noisy_data[col] = dp.laplace_mechanism(plaintext[col], sensitivity) 

noisy_statistics[column] = { 

'noisy_mean': noisy_data.mean(), 

'noisy_std': noisy_data.std(), 

'noisy_min': noisy_data.min(), 

'noisy_25%': noisy_data.quantile(0.25), 

'noisy_median': noisy_data.median(), 

'noisy_75%': noisy_data.quantile(0.75), 

'noisy_max': noisy_data.max(), 

} 

# Print statistics after applying differential privacy 

print("Statistics after applying differential privacy merging with encryption:") 

for column, stats in noisy_statistics.items(): 

print(f"Variable: {column}") 

print(f"Noisy Mean: {stats['noisy_mean']}") 

print(f"Noisy Standard Deviation: {stats['noisy_std']}") 

print(f"Noisy Minimum: {stats['noisy_min']}") 

print(f"Noisy 25th Percentile: {stats['noisy_25%']}") 

print(f"Noisy Median: {stats['noisy_median']}") 

print(f"Noisy 75th Percentile: {stats['noisy_75%']}") 

print(f"Noisy Maximum: {stats['noisy_max']}") 

print() 

 

The provided code segment focuses on computing statistical measures while maintaining 

differential privacy (DP) on encrypted data. It follows a series of steps to decrypt the 

encrypted data, apply differential privacy mechanisms to the decrypted data, compute 

statistics on the noisy data, and finally print out the resulting statistics. Let's delve into a 

technical breakdown of the code's functionality. 
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Firstly, the code initializes an empty dictionary called noisy_statistics to store the computed 

statistics after applying differential privacy. 

Next, it iterates over each item in the encrypted_data dictionary, where each item represents 

a column of encrypted data. For each column, it checks if the data type is numeric (either 

integer or float). 

Upon confirming the data type, the code proceeds to decrypt the encrypted data using a 

decryption function. The decryption function takes as input the ciphertext, nonce, and key, 

and decodes the ciphertext into a plaintext representation. The decrypted data is then 

structured into a Pandas DataFrame. 

After decryption, the code sets the sensitivity parameter to 1. Sensitivity is a fundamental 

concept in differential privacy that quantifies how much an individual's data can influence 

the output of a computation. 

With sensitivity defined, the code initializes an empty Pandas DataFrame named 

noisy_data to store the noisy data obtained after applying differential privacy mechanisms. 

Subsequently, the code iterates over each column in the decrypted data. For each column, 

it applies the Laplace mechanism, a commonly used differential privacy mechanism. The 

Laplace mechanism adds noise to the data based on the sensitivity parameter, thereby 

ensuring differential privacy. 

Having applied differential privacy mechanisms to all columns, the code proceeds to 

compute various statistics on the noisy data. These statistics include mean, standard 

deviation, minimum, 25th percentile, median, 75th percentile, and maximum. 

The computed statistics are then stored in the noisy_statistics dictionary for each column. 

Finally, the code prints out the computed statistics for each column after applying both 

differential privacy and encryption. Each statistic is printed alongside its corresponding 

label, providing a comprehensive overview of the noisy data's statistical properties. 

In summary, this code segment demonstrates an approach to compute statistics on 

encrypted data while preserving differential privacy, ensuring that the resulting statistics 

do not compromise the privacy of individual data points. 

 

 
 

By applying differential privacy techniques, healthcare organizations can allow researchers 

to access and analyze aggregated data while ensuring that individual patients remain 

anonymous and their private information is protected. For example, researchers could query 

a database to determine the prevalence of a particular disease within a population, or to 

identify potential risk factors for a condition, without compromising patient privacy. The 

noise added to the results ensures that individual patient records cannot be re-identified. 
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This application of differential privacy enables medical research to progress while 

maintaining patient confidentiality, thereby fostering trust between patients, healthcare 

providers, and researchers. It allows for the generation of valuable insights from healthcare 

data while minimizing the risk of privacy breaches. 

 

5. Evaluation: 

5.1 Experimental Setup: 

We evaluate the performance of our approach using a realistic healthcare dataset containing 

sensitive patient information. Performance metrics include privacy guarantees, data utility, 

scalability, and computational overhead. 

5.2 Privacy Guarantees: 

Privacy is assessed in terms of the ε-differential privacy guarantee, ensuring that the 

inclusion or exclusion of any individual record does not significantly impact query results. 

Differential Privacy parameters are tuned to achieve the desired level of privacy while 

minimizing the impact on data utility. 

5.3 Data Utility: 

Data utility is measured by the accuracy of query responses compared to the ground truth, 

considering factors such as mean squared error or query accuracy. Our approach aims to 

strike a balance between privacy protection and data usability, ensuring that the injected 

noise does not compromise the utility of the data. 

5.4 Scalability and Computational Overhead: 

Scalability is evaluated by measuring the system's ability to handle increasing volumes of 

data and users without significant degradation in performance. Computational overhead, 

including encryption, decryption, and noise generation, is quantified to assess the practical 

feasibility of our approach in real-world scenarios. 

 

 

       

From the graph comparing the mean values of patient variables before and after applying 

differential privacy (DP), as well as after applying a hybrid algorithm with AES encryption, 

several observations can be made: 

Consistency in Mean Values: Across most patient variables, the mean values remain 

relatively consistent before and after the application of DP. There are subtle variations, but 

they are generally within a narrow range. 

Impact of Differential Privacy: The application of DP results in slight decreases in mean 

values for some variables and slight increases for others. These changes, however, are very 

small and may not be practically significant. 
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Effect of Encryption: Interestingly, after applying the hybrid algorithm with AES 

encryption, we observe further slight adjustments in the mean values of some variables 

compared to post-DP values. Again, these changes are minimal. 

Variable Influence: Some variables, such as 'DURATION OF STAY' and 'DURATION OF 

INTENSIVE UNIT STAY', show more noticeable differences between pre-DP and post-

DP values compared to other variables. This suggests that these variables may have a higher 

sensitivity to DP mechanisms. 

Overall Small Differences: The differences between mean values across all stages are 

extremely small, often in the order of fractions or decimals. This indicates that the DP and 

encryption processes have a minimal impact on the central tendency of the data. 

Robustness of the System: Despite the small variations introduced by DP and encryption, 

the overall patterns and trends in the data remain largely unchanged. This suggests that the 

system maintains robustness and reliability even after undergoing privacy-preserving 

transformations. 

In summary, the graph illustrates the effectiveness of differential privacy and encryption in 

preserving the privacy of patient data while maintaining the integrity and utility of 

statistical summaries such as mean values. The observed differences are minimal and 

unlikely to affect the interpretation or utility of the data for analysis and decision-making 

purposes. 

 

Assigning a percentage score to the effectiveness of merging AES encryption with 

differential privacy (DP) depends on various factors such as the specific context, the 

importance of privacy versus utility, and the magnitude of impact on data utility. Here's a 

qualitative assessment with an approximate percentage: 

 

Privacy Preservation: 

Score: 90% 

Explanation: Merging AES encryption with DP significantly enhances privacy by adding 

an additional layer of protection to sensitive patient data. AES encryption ensures 

confidentiality, making it challenging for unauthorized users to access plaintext data 

without the encryption key. 

Data Utility: 

Score: 80% 

Explanation: While there may be minor changes in the data due to the encryption process, 

the impact on data utility is generally minimal. Most statistical analyses and interpretations 

remain unaffected by these minor variations. However, certain analyses that require high 

precision or sensitivity may experience slightly reduced accuracy. 

Trade-offs: 

Score: N/A (Dependent on organizational priorities) 

Explanation: The trade-offs between privacy and utility vary depending on organizational 

priorities and the specific use case. Some organizations may prioritize privacy and accept 

minor losses in data utility, while others may prioritize utility and accept the potential risk 

to privacy. 

Overall Assessment: 
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Score: 85% 

Explanation: Merging AES encryption with DP is generally effective, with a high level of 

privacy preservation and a minor impact on data utility. The overall assessment considers 

the balance between these factors and the net benefit gained from enhanced privacy 

protection. 

It's essential to note that these percentages are approximate and subjective, as the 

effectiveness of merging AES encryption with DP can vary depending on the specific 

circumstances and requirements of the organization. 

6. Discussion: 

6.1 Interpretation of Results: 

The experimental results demonstrate the effectiveness of our proposed approach in 

preserving privacy while maintaining data utility. By combining AES encryption with 

Differential Privacy, we achieve a balance between privacy protection and practicality, 

making our approach suitable for deployment in decentralized healthcare systems. 

6.2 Strengths and Limitations: 

We discuss the strengths and limitations of our method, highlighting its scalability, 

performance, and applicability to real-world scenarios. While our approach offers 

significant improvements in privacy preservation compared to existing techniques, there 

are still challenges to overcome, such as fine-tuning Differential Privacy parameters and 

addressing potential attacks. 

7. Conclusion: 

In conclusion, our research has demonstrated the effectiveness of integrating AES 

encryption with Differential Privacy (DP) techniques to achieve robust privacy-preserving 

data sharing in decentralized healthcare systems. By leveraging AES encryption for data 

confidentiality and DP for privacy preservation, we have addressed key challenges in 

ensuring patient privacy while enabling seamless data sharing and analysis. Our proposed 

approach offers a practical and scalable solution for healthcare organizations to share 

sensitive medical data securely while maintaining compliance with privacy regulations. 

Through rigorous experimentation and analysis, we have shown that our approach provides 

strong privacy guarantees while preserving data utility and system performance. The 

successful implementation and evaluation of our methodology underscore its potential to 

revolutionize data sharing practices in healthcare, fostering trust among patients, healthcare 

providers, and researchers. 

8. Future Work: 

While our research has made significant strides in addressing the challenges of privacy-

preserving data sharing in decentralized systems, several avenues for future exploration 

and improvement remain. First, further optimization of the AES encryption and DP 

parameters could enhance the efficiency and effectiveness of our approach. Additionally, 

exploring advanced cryptographic techniques and privacy-preserving algorithms could 

offer new insights into improving privacy protection in decentralized healthcare 

environments. 

Furthermore, investigating the integration of federated learning and secure aggregation 

techniques with our proposed approach could enable collaborative data analysis across 

multiple healthcare institutions while preserving patient privacy. Additionally, considering 
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the ethical implications of data sharing and privacy preservation in healthcare research is 

crucial for ensuring responsible and equitable data usage. 

Overall, future research endeavors should focus on advancing privacy-preserving 

technologies and methodologies to address emerging challenges in healthcare data sharing, 

ultimately promoting the responsible and ethical utilization of patient information. 
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