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Abstract 

Singularly perturbed differential-difference equations (SPDDE) pose significant 

challenges due to their oscillatory behavior and unsatisfactory results when traditional 

numerical methods are applied with large step sizes relative to the perturbation parameter 

ε. In this study, we propose a novel computational approach for solving SPDDE, leveraging 

a dual-layer fitted method and Taylor series expansion. First, the given SPDDE is reduced 

to an ordinary singularly perturbed problem using Taylor series expansion to handle terms 

involving negative and positive shifts. Subsequently, a three-term numerical scheme is 

derived using finite differences, augmented by a fitting factor derived from singular 

perturbation theory to enhance accuracy and stability. The resulting tridiagonal system of 

equations is efficiently solved using the Thomas algorithm. To validate the proposed 

method, we solve model problems with varying values of ε, delay parameter δ, and advance 

parameter η. The computational results are compared with existing literature, presenting 

maximum absolute errors and graphical representations. Our approach demonstrates 

significant improvements in accuracy and stability, making it a valuable tool for 

researchers tackling SPDDE in diverse applications. 

Key words: Accuracy, Model Issues, Dual-Layer Fitted Method, Positive shift, 

Negative Shift. 

 

1. Introduction 

In the realm of control systems, the ubiquitous presence of time delays cannot be 

overlooked, stemming from the finite duration required for information sensing and 

subsequent response. This intrinsic quality gives rise to the development of singularly 

perturbed differential-difference equations (SPDDEs). Such equations encompass mean 

differential equations, featuring a minute positive parameter scaling the leading derivative, 

and include at least one shift term “such as a delay or advance”. This forms a crucial area 

of investigation in scientific and engineering fields, where a nuanced understanding of 

intricate dynamics is essential for advancing research and innovation. 

The intrigue of SPDDEs lies in their multi-scale nature; they exhibit thin transition layers 

where solutions undergo rapid variation, while maintaining stability away from these 

layers, where variations occur at a slower pace. This intricate behavior renders SPDDEs 

fundamental to theoretical explorations and practical applications across various fields, 

including control theory (M.W. Derstineet al.,1982), physiology (K. Ikeda et al.,1982) and 

neural networks(M.K. Kadalbajoo, K.K. Sharma, 2005), among others. 
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Previous research efforts have delved into the complexities of SPDDEs, utilizing diverse 

techniques to unravel their intricate structure. Literature has explored approximate 

solutions employing methods such as matched asymptotic expansions and Laplace 

transforms, facilitating an in-depth understanding of the layer structures inherent in these 

differential-difference equations. Moreover, computational advancements have enabled the 

numerical simulation of SPDDEs, allowing researchers to explore their behavior under 

various conditions and parameter settings. These simulations provide valuable insights into 

the dynamics of SPDDEs and aid in the validation of theoretical findings. The study of 

SPDDEs has spurred interdisciplinary collaborations, drawing expertise from mathematics, 

physics, engineering, and beyond. Such collaborations foster a comprehensive approach to 

understanding SPDDEs and harnessing their potential in diverse applications. In essence, 

the allure of SPDDEs lies not only in their mathematical intricacies but also in their 

profound implications for real-world phenomena, making them a focal point of ongoing 

research and innovation. 

Researchers have also proposed innovative numerical integration techniques, ranging from 

Numerov's difference scheme to exponential fitted methods, offering robust solutions 

tailored to specific types of SPDDEs. Furthermore, advancements in parametric spline 

schemes and fitted finite difference methods have expanded the toolkit for addressing 

nonlinear SPDDEs, providing a comprehensive approach to deciphering and solving these 

complex problems.This introduction sets the stage for a comprehensive exploration of 

SPDDEs, highlighting their significance, prevalence in real-world scenarios, and the 

diverse methodologies employed to comprehend and solve them. Through this study, we 

delve into the intricate world of SPDDEs, aiming to contribute to the existing body of 

knowledge and enhance our understanding of these intriguing equations. 

 

2. Method Description 

Considering SPDDE of the form: 

ε2u′′(t) + b(t)u(t − δ) + c(t)u(t) + d(t)u(t + η) = f(t)    

 (1) 

∀t ∈ (0,1) subject to the interval and  boundary conditions 

u(t) = φ(t)  on − δ ≤ t ≤ 0        

 (2) 

u(t) = γ(t)  on  1 ≤ t ≤ 1 + η        

 (3) 

where 

a(t), b(t), c(t), d(t), f(t), φ(t) and γ(t)are sufficiently smooth functions on (0, 1), 0< ε <
< 1 is the perturbation parameter and 0 < δ = O(ε) and0 < η = O(ε) are the delay 

(negative shift) and the advance(positive shift) parameters respectively.  

In the neighbourhood of point t, Taylor’s Expansion is used and we get 

u(t − δ) ≈ u(t) − δu′(t)        

 (4) 

u(t + η) ≈ u(t) + ηu′(t)        

 (5) 

Using Equation (4) and Equation (5) in Equation (1), we get an asymptotically equivalent 

singularly perturbed boundary value problem of the form: 

ε2u′′(t) + p(t)u′(t) + q(t)u(t) = f(t)      

 (6) 

u(0) = φ(0) = φo         

 (7) 

u(1) = γ(1) = γ1         

 (8) 

where 

p(t) = d(t)η − b(t)δ         

 (9) 

q(t) = b(t) + c(t) + d(t)        

 (10) 
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Since 0 < δ << 1and 0 < η << 1, the transition from Equation (1) to Equation (6) is 

admissible. Further details on the validity of this transition are found in El’sgol’ts and 

Norkin. If q(t) ≤ 0 on the interval [0,1], then the solution of Equation (1) exhibits boundary 

layers at each edge of the interval [0,1], while it exhibits oscillatory behavior for q(t) > 0. 

Now, we consider dual layer problems. 

From the singular perturbations,  the solution of Equations (6) -(8) is of the form 

u(t) = uo(x) +
p(o)

p(t)
(φo − uo(o))e

− ∫ (
p(t)

ε2 −
q(t)

p(t)
)

t

o
dx

+ O(ε)    

 (11) 

Where,uo(t) is the solution of -  

p(t)uo
′ (t) + q(t)uo(t) = f(t),  uo(1) = γ1      

 (12) 

Using  the Taylor’s series expansion for p(t) and q(t) about the point ‘t = 0’ and limiting to 

their first terms,  Equation (11) becomes,  

u(t) = uo(t) + (φo − uo(0))e
−(

p(o)

ε2 −
q(o)

p(o)
)t

+ O(ε)     

 (13) 

on discretization of the interval [0,1] into N equal subintervals of step size h =
1

N
 to make 

sure that ti = ih, i =0, 1, 2,.… ,N..   

From Equation (13),  we have  

u(ih) = uo(ih) + (φo − uo(0))e
−(

p(o)

ε2 −
q(o)

p(o)
)ih

+ O(ε) 

Therefore   

lim
h→o

u(ih) = uo(0) + (φo − uo(o))e
−(

p2(o)−εq(o)

p(o)
)iρ

     
 (14)

 

where ρ =
h

ε2 

Supposing that 𝑢(𝑡) is continuously differentiable in the interval [0,1] and applying 

Taylor’s series expansion for 𝑢(𝑡𝑖+1) and 𝑢(𝑡𝑖−1), we have: 

𝑢(𝑡𝑖+1) = 𝑢𝑖+1 = 𝑢𝑖 + ℎ𝑢𝑖
′ +

ℎ2

2!
𝑢𝑖

′′ +
ℎ3

3!
𝑢𝑖

′′′ +
ℎ4

4!
𝑢𝑖

(4)
+

ℎ5

5!
𝑢𝑖

(5)
+

ℎ6

6!
𝑢𝑖

(6)
+

ℎ7

7!
𝑢𝑖

(7)

+
ℎ8

8!
𝑢𝑖

(8)
+ 𝑂(ℎ9) 

𝑢(𝑡𝑖−1) = 𝑢𝑖−1 = 𝑢𝑖 − ℎ𝑢𝑖
′ +

ℎ2

2!
𝑢𝑖

′′ −
ℎ3

3!
𝑢𝑖

′′′ +
ℎ4

4!
𝑢𝑖

(4)
−

ℎ5

5!
𝑢𝑖

(5)
+

ℎ6

6!
𝑢𝑖

(6)
−

ℎ7

7!
𝑢𝑖

(7)

+
ℎ8

8!
𝑢𝑖

(8)
− 𝑂(ℎ9) 

From the finite differences, we have  

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 =  
2ℎ2

2!
𝑢𝑖

′′ +
2ℎ4

4!
𝑢𝑖

(4)
+

2ℎ6

6!
𝑢𝑖

(6)
+

2ℎ8

8!
𝑢𝑖

(8)
+ 𝑂(ℎ10)   

 (15) 

Now we have the relation: 

𝑢𝑖−1
′′ − 2𝑢𝑖

′′ + 𝑢𝑖+1
′′ =  

2ℎ2

2!
𝑢𝑖

(4)
+

2ℎ4

4!
𝑢𝑖

(6)
+

2ℎ6

6!
𝑢𝑖

(8)
+

2ℎ8

8!
𝑢𝑖

(10)
+ 𝑂(ℎ12) 

Substituting 
ℎ4

12
𝑢𝑖

(6)
 from the above equation in Eq.(15), we have 

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 = ℎ2𝑢𝑖
′′ +

ℎ4

12
𝑢𝑖

(4)
+

ℎ2

30
[𝑢𝑖−1

′′ − 2𝑢𝑖
′′ + 𝑢𝑖+1

′′ − ℎ2𝑢𝑖
(4)

−
ℎ6

360
𝑢𝑖

(8)
] +

2ℎ8

8!
+ 𝑂(ℎ10)  

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 = ℎ2 [𝑢𝑖
′′ +

1

30
(𝑢𝑖−1

′′ − 2𝑢𝑖
′′ + 𝑢𝑖+1

′′ )] +
ℎ4

12
𝑢𝑖

(4)
−

ℎ4

30
𝑢𝑖

(4)
−

ℎ6

10800
𝑢𝑖

(8)
+

2ℎ8

8!
𝑢𝑖

(8)
+ 𝑂(ℎ10)  

and 

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 =
ℎ2

30
(𝑢𝑖−1

′′ + 28𝑢𝑖
′′ + 𝑢𝑖+1

′′ ) +  𝑅,      

 (16)                             
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Where  𝑅 =
ℎ4

20
𝑢𝑖

(4)
+

13ℎ6

302400
𝑢𝑖

(8)
+ 𝑂(ℎ10) 

Now from the Equation (6), we have 

𝜀𝑢𝑖+1
′′ = −𝑝𝑖+1𝑢𝑖+1

′ − 𝑞𝑖+1𝑢𝑖+1 + 𝑓𝑖+1 

𝜀𝑢𝑖
′′ = −𝑝𝑖𝑢𝑖

′ − 𝑞𝑖𝑢𝑖 + 𝑓𝑖 

𝜀𝑢𝑖−1
′′ = −𝑝𝑖−1𝑢𝑖−1

′ − 𝑞𝑖−1𝑢𝑖−1 + 𝑓𝑖−1       

 (17) 

Utilizing the subsequent three-point approximations for first-order derivatives: 

𝑢𝑖+1
′ ≃

𝑢𝑖−1 − 4𝑢𝑖 + 3𝑢𝑖+1

2ℎ
 

𝑢′𝑖 ≃
𝑢𝑖+1 − 𝑢𝑖−1

2ℎ
 

𝑢𝑖−1
′ ≃

−3𝑢𝑖−1+4𝑢𝑖−𝑢𝑖+1

2ℎ
         

 (18) 

Substituting Equation (17) and Equation (18) in Equation (16) and condensing we get 

𝜀 (
𝑢𝑖−1−2𝑢𝑖+𝑢𝑖+1

ℎ2 ) +
𝑝𝑖−1

60ℎ
[−3𝑢𝑖−1 + 4𝑢𝑖 − 𝑢𝑖+1] +

28𝑝𝑖

60ℎ
[𝑢𝑖+1 − 𝑢𝑖−1] +

𝑝𝑖+1

60ℎ
[𝑢𝑖−1 −

4𝑢𝑖 + 3𝑢𝑖+1] +
𝑞𝑖−1

30
𝑦𝑖−1 +

28𝑞𝑖

30
𝑦𝑖 +

𝑞𝑖+1

30
𝑦𝑖+1 =

[𝑓𝑖−1+28𝑓𝑖+𝑓𝑖+1]

30
   

    (19) 

 

The tridiagonal system Eq. (19) is given by  

𝐴𝑖𝑢𝑖−1 − 𝐵𝑖𝑢𝑖 + 𝐶𝑖𝑢𝑖+1 = 𝐷𝑖,  

for i = 1,2,…,N-1         

 (20) 

where 

𝐴𝑖 =
𝜀

ℎ2
−

3𝑝𝑖−1

60ℎ
+

𝑞𝑖−1

30
−

28𝑝𝑖

60ℎ
+

𝑝𝑖+1

60ℎ
 

𝐵𝑖 =
2𝜀

ℎ2
−

4𝑝𝑖−1

60ℎ
−

28𝑞𝑖

30
+

4𝑝𝑖+1

60ℎ
 

𝐶𝑖 =
𝜀

ℎ2
−

𝑝𝑖−1

60ℎ
+

𝑞𝑖+1

30
+

28𝑝𝑖

60ℎ
+

3𝑝𝑖+1

60ℎ
 

𝐷𝑖 =
1

30
[𝑓𝑖−1 + 28𝑓𝑖 + 𝑓𝑖+1] 

To solve the tidiagonal system of Equation (20), Thomas algorithm is used. 

 

3. Numerical examples 

The suggested approach is verified using examples featuring equations akin to Equations 

(1) through (3). This validation process extends to a SPDDE. 

𝜀2𝑢′′(𝑥) + 𝑏(𝑥)𝑢(𝑥 − 𝛿) + 𝑐(𝑥)𝑢(𝑥) + 𝑑(𝑥)𝑢(𝑥 + 𝜂) = 𝑓(𝑥) 

∀𝑥 ∈ (0,1)& subject to the interval and boundary conditions 

𝑢(𝑥) = 𝜑(𝑥), 𝑜𝑛 − 𝛿 ≤ 𝑥 ≤ 0 

𝑢(𝑥) = 𝛾(𝑥), 𝑜𝑛   1 ≤ 𝑥 ≤ 1 + 𝜂 

with constant coefficients(i.e, 

 𝑏(𝑥) = 𝑏, 𝑐(𝑥) = 𝑐, 𝑑(𝑥) = 𝑑, 𝑓(𝑥) = 𝑓, 𝜑(𝑥) = 𝜑 𝑎𝑛𝑑 𝛾(𝑥) = 𝛾) 

is given by  𝑢(𝑥) =
[(1−𝑏−𝑐−𝑑)𝑒𝑚2−1]𝑒𝑚1𝑥−[(1−𝑏−𝑐−𝑑)𝑒𝑚1−1]𝑒𝑚2𝑥

(𝑏+𝑐+𝑑)(𝑒𝑚1−𝑒𝑚2)
+

1

𝑏+𝑐+𝑑
 

where 

 𝑚1 =
(𝑏𝛿−𝑑𝜂)+√(𝑑𝜂−𝑏𝛿)2−4𝜀2(𝑏+𝑐+𝑑)

2𝜀2 ,       𝑚2 =
(𝑏𝛿−𝑑𝜂)−√(𝑑𝜂−𝑏𝛿)2−4𝜀2(𝑏+𝑐+𝑑)

2𝜀2  

Example 1. Considering the "Singularly perturbed partial differential equation”& constant 

coefficients together: 

𝜀2𝑢′′(𝑥) − 2𝑢(𝑥 − 𝛿) − 𝑢(𝑥) − 2𝑢(𝑥 + 𝜂) = 1 ,    𝜑(𝑥) = 1, 𝛾(𝑥) = 0 

Table 1 and 2  &  Figure 1 and 2 represents the results observed. 

Example 2. Considering the "Singularly perturbed partial differential equation”& constant 

coefficients together: 

𝜀2𝑢′′(𝑥) + 0.25𝑢(𝑥 − 𝛿) − 𝑢(𝑥) + 0.25𝑢(𝑥 + 𝜂) = 1 ,    𝜑(𝑥) = 1, 𝛾(𝑥) = 0 
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Table  3 and 4  &  Figure 3 and 4 represents the results observed. 

 

Table 1: In solution of Example 1, “the numerical results for   N=100, 𝜺 =
𝟎. 𝟏 𝒂𝒏𝒅 𝜹 = 𝟎. 𝟎𝟕” 

  x 𝜂 = 0 𝜂 = 0.03 𝜂 = 0.06 

Num. Sol. Exact Sol. Num. Sol. Exact Sol. Num. Sol. Exact Sol. 

0.0

0 

0.0

2 

0.0

4 

0.0

6 

0.0

8 

0.1

0 

0.2

0 

0.4

0 

0.6

0 

0.8

0 

0.9

0 

0.9

2 

0.9

4 

0.9

6 

0.9

8 

1.0

0 

1.00000000 

0.45242458 

0.15471487 

-

0.00714606 

-

0.09514776 

-

0.14299314 

-

0.19729146 

-

0.19998330 

-

0.19971798 

-

0.19248997 

-

0.16124429 

-

0.14618856 

-

0.12528403 

-

0.09625855 

-

0.05595734 

0.00000000 

1.00000000 

0.45264934 

0.15495931 

-

0.00694668 

-

0.09500320 

-

0.14289488 

-

0.19728211 

-

0.19998323 

-

0.19971742 

-

0.19248250 

-

0.16122502 

-

0.14616716 

-

0.12526175 

-

0.09623793 

-

0.05594302 

0.00000000 

1.00000000 

0.50300731 

0.21184940 

0.04127762 

-

0.05865005 

-

0.11719162 

-

0.19428558 

-

0.19997011 

-

0.19988711 

-

0.19525107 

-

0.16918139 

-

0.15520223 

-

0.13488218 

-

0.10534508 

-

0.06241008 

0.00000000 

1.00000000 

0.50344253 

0.21235949 

0.04172600 

-

0.05829970 

-

0.11693498 

-

0.19425011 

-

0.19996975 

-

0.19988642 

-

0.19523670 

-

0.16913482 

-

0.15514807 

-

0.13482316 

-

0.10528788 

-

0.06236852 

0.00000000 

1.00000000 

0.55169184 

0.27086719 

0.09495586 

-

0.01523674 

-

0.08426247 

-

0.18883735 

-

0.19989563 

-

0.19996039 

-

0.19721989 

-

0.17641992 

-

0.16383885 

-

0.14454520 

-

0.11495748 

-

0.06958335 

0.00000000 

1.00000000 

0.55214441 

0.27143434 

0.09548892 

-

0.01479139 

-

0.08391365 

-

0.18876996 

-

0.19989436 

-

0.19995998 

-

0.19720588 

-

0.17636058 

-

0.16376607 

-

0.14446151 

-

0.11487195 

-

0.06951778 

0.00000000 

“Maximum Error: 3.0469e-04” “1.8305e-04” “4.8258e-04” 

 

 

Table 2: In solution of Example 1, “the maximum absolute errors for 𝜹 = 𝜺𝟐  and  𝜼 =
𝟐𝜺𝟐” 

𝜀\𝑁 128 256 512 1024 2048 

0.1 3.6651e-04 9.1836e-05 2.2972e-05 5.7438e-06 1.4360e-06 

0.01 2.1734e-02 7.7833e-03 2.0641e-03 5.2711e-04 1.3272e-04 

 

 

 

 

 

Table 3: In solution of Example 2, “the numerical results for   N=100, 𝜺 =
𝟎. 𝟎𝟏 𝒂𝒏𝒅  𝜼 = 𝟎. 𝟎𝟎𝟕” 

  x 𝛿 = 0 𝛿 = 0.003 𝛿 = 0.006 

Num. Sol. Exact Sol. Num. Sol. Exact Sol. Num. Sol. Exact Sol. 
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0.0

0 

0.0

2 

0.0

4 

0.0

6 

0.0

8 

0.1

0 

0.2

0 

0.4

0 

0.6

0 

0.8

0 

0.9

0 

0.9

2 

0.9

4 

0.9

6 

0.9

8 

1.0

0 

1.00000000 

-1.38767494 

-1.87501934 

-1.97449040 

-1.99479328 

-1.99893726 

-1.99999962 

-2.00000000 

-2.00000000 

-1.99999110 

-1.99578031 

-1.98553127 

-1.95038873 

-1.82988986 

-1.41671595 

0.00000000 

1.00000000 

-

1.39431045 

-

1.87771339 

-

1.97531076 

-

1.99501533 

-

1.99899361 

-

1.99999966 

-

2.00000000 

-

2.00000000 

-

1.99999255 

-

1.99613909 

-

1.98652411 

-

1.95296451 

-

1.83583000 

-

1.42699041 

0.00000000 

1.00000000 

-

1.33302029 

-

1.85171269 

-

1.96703179 

-

1.99267029 

-

1.99837041 

-

1.99999911 

-

2.00000000 

-

2.00000000 

-

1.99999548 

-

1.99699376 

-

1.98896875 

-

1.95952135 

-

1.85146549 

-

1.45495961 

0.00000000 

1.00000000 

-

1.34238288 

-

1.85584657 

-

1.96840075 

-

1.99307326 

-

1.99848162 

-

1.99999923 

-

2.00000000 

-

2.00000000 

-

1.99999621 

-

1.99724841 

-

1.98972284 

-

1.96161494 

-

1.85663224 

-

1.46452309 

0.00000000 

1.00000000 

-

1.27719916 

-

1.82585298 

-

1.95804213 

-

1.98989094 

-

1.99756439 

-

1.99999802 

-

2.00000000 

-

2.00000000 

-

1.99999781 

-

1.99790619 

-

1.99174047 

-

1.96741828 

-

1.87147350 

-

1.49299605 

0.00000000 

1.00000000 

-

1.28881467 

-

1.83140514 

-

1.96003260 

-

1.99052526 

-

1.99775390 

-

1.99999832 

-

2.00000000 

-

2.00000000 

-

1.99999815 

-

1.99807730 

-

1.99228502 

-

1.96904301 

-

1.87578258 

-

1.50156761 

0.00000000 

“Maximum Error: 1.0274e-02” “9.9633e-03” “1.1880e-02” 

 

Table 4: In solution of Example 2, “the maximum absolute errors for 𝛅 = 𝛆𝟐  and  𝛈 =
𝟐𝛆𝟐” 

ε\N 128 256 512 1024 2048 

0.1 8.2492e-05 2.0630e-05 5.1581e-06 1.2896e-06 3.2239e-07 

0.01 8.0762e-03 2.0682e-03 5.2272e-04 1.3088e-04 3.2750e-05 
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Figure 1. Numerical3solution of Example 1 for "N=100, 𝛆 = 𝟎. 𝟏 𝐚𝐧𝐝 𝛅 = 𝟎. 𝟎𝟕" 

 

 
Figure 2. Numerical5solution of Example 1 for "N=100, 𝛆 = 𝟎. 𝟎𝟏 𝐚𝐧𝐝 𝛈 = 𝟎. 𝟎𝟎𝟕" 
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Figure 3. Numerical6solution of  Example 2  for "N=100, 𝛆 = 𝟎. 𝟏, 𝐚𝐧𝐝 𝛅 = 𝟎. 𝟎𝟕" 

 

 
Figure 4. Numerical6Solution of Example 2 for  "N=100, 𝛆 = 𝟎. 𝟎𝟏, 𝐚𝐧𝐝 𝛈 = 𝟎. 𝟎𝟎𝟕" 

 

4. Discussions and conclusion 

This study has introduced and applied a tailored fitted method for solving singularly 

perturbed differential-difference equations displaying dual-layer behavior. Through a 

series of model problems involving variations in parameters such as ε, δ, η, and h, we 

systematically evaluated the performance of our method. By presenting the maximum 

absolute errors and computational orders for well-established examples from the 

literature, we conducted a comprehensive analysis. The comparison between our 

numerical solutions and exact solutions validated the accuracy and reliability of our 

proposed approach. The results unequivocally show that our method excels in 
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approximating exact solutions, affirming its robustness and effectiveness in dealing 

with the intricacies of singularly perturbed differential-difference equations featuring 

dual-layer phenomena. This study underscores the practical applicability and potential 

of the fitted method in accurately capturing the behavior of complex systems governed 

by such equations. 
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