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ABSTRACT 

Unmanned aerial vehicles (UAVs) equipped with sensing and data transmitting capabilities 

are becoming more and more widespread in a number of applications due to their mobility 

and miniaturization. This research investigates a modest federated learning (FL) network 

based on unmanned aerial vehicles (UAVs), whereby the UAV serves as a substitute user 

(SU) . To improve the UAV's performance, this research suggests an effective energy 

management strategy. Spectrum sensing is required when SUs opportunistically use the 

primary network's licensed spectrum to decide whether to transmit data or not, hence it is 

important to optimize both simultaneously the secondary transmission power along with 

the length of sensing. To examine the impact of gearbox power with sensing time on the 

functioning of the system, researchers characterise this non-convex optimisation issue as 

the to certain restrictions. Since the problem is hard to solve, we suggest an algorithm that 

uses the Optimised Alternating Dichotomy Optimisation (OADO) algorithm's techniques. 

For UAV systems, the suggests the energy-efficient, low-latency, and trustworthy Enhanced 

Tiny FL Network (ETFNET) technology. To confirm the suggested technique's 

effectiveness, we also contrast it using the process known as particle swarm optimisation . 

According to numerical data, our suggested algorithm works better than the PSO algorithm 

and greatly increases the UAV-based FL system's energy efficiency. 

 

Keywords: Secondary User, Tiny, Federated Learning and Optimization 

 

I INTRODUCTION 

Unmanned aerial vehicles [1] are becoming more popular for a variety of uses that are 

hazardous or impossible for human operators. UAVs' first intended uses were military 

operations, surveillance, and reconnaissance [2]. This was because of the devices' 

adaptability and the most recent advancement1s in electronics and sensor technology. 

UAVs with communication platforms and sensor nodes (SNs) can be used in a variety of 

contexts and to carry out many challenging tasks.   

Federated learning (FL) has been shown to be a practical way to create intelligent 

systems for applications such as digital healthcare and traffic monitoring [3]. Wireless FL 

enables a base station or UAV to gather data from several user equipment (UEs), such as 

model parameters. Users can use local training data to fine-tune a global model that was 

learned on a BS or UAV, and then use that model to generate a nearby model on their 

gadget [4]. To update the global parameter, the organised server receives the parameters 

generated by these local models after that. Because FL eliminates the requirement for the 

central server to obtain user information directly while receiving instruction, it significantly 

reduces privacy problems associated with crowdsourcing learning. Furthermore, tiny FL is 
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more capable of handling the diversity of information and processing power possessed by 

every entity respondent the standard distributed little machine learning [5]. 

The spectrum resource is more limited and the need for spectrum for UAVs is more 

pressing due to the coexistence of several wireless networks. Energy efficiency is another 

issue, even if future wireless networks will unavoidably need to achieve better throughput 

and lower power consumption. Additionally, as the UAVs run on batteries, energy 

efficiency is a crucial component of the networks' operation [6]. The best location for a 

UAV to maximize performance has been addressed in certain papers [7], but energy 

efficiency was rarely examined. It is important to figure out ways to make the most of the 

UAVs' limited energy to enhance drone performance in various situations. 

 Due to the flexibility of the wireless link, there are significant hurdles in training 

the tiny WFL model, despite its potential [6]. Since it communicates via a broadcast 

channel, data security cannot be ensured and manipulation is simple [8]. The most 

significant issue is that this issue still arises when supervised learning is done with FL: The 

FL process may be interrupted by data owners at the UE sending false parameters to the 

edge server in the UAV, and Internet of Things participants in FL are not always 

trustworthy. To be more precise, hostile devices create a bogus data injection attack by 

purposefully changing a tiny percentage of the local model's parameters or by introducing 

harmful information into the local data collection[9]. Additionally, the Unmanned Aerial 

Vehicle Internet would experience a delayed convergence of its global model due to 

scattered little data storage as well as lightweight training in tiny FL. 

 As far as the authors are aware, there hasn't been a comprehensive discussion of 

the FL network based on UAVs in the literature, making it a novel and difficult problem. 

In [10], the authors proposed that condensed data from sensor on the surface be sent to the 

UAVs as part of an instance to a distributed spectrum sensing device in a UAV 

environment.  Outcomes demonstrated that using UAVs to gather spectrum sensing 

measurements improved the speed and accuracy of signal decoding. To maximize 

throughput, [11] combined the optimization of UAV nodes position or the distribution of 

communication resources. The system viewed a rotary-wing UAV with several ground 

terminals as a relay. In compressive sensing and the Enhanced Tiny FL Network (ETFNET) 

technologies were introduced, and the information exchange between UAVs is examined. 

In the study [12], the optimal location to minimize energy consumption was the main 

emphasis of the positioning problem of an FL-M-UAV techniques operating in the mode 

of overlaying. It's also important to remember that looked into the energy-efficient route 

design for UAV-based communication and considered the energy consumption of the 

UAVs. The following are the main aspects of our work: 

• To facilitate uninterrupted UAV-to-ground user communication, an overlay FL 

system based on UAVs is being considered. To effectively access the 

licensed spectrum opportunistically, the effects of the UAV's flying radius, 

transmitted power, & sense time on system reliability are investigated under a 

range of scenarios. 

• Using a combination of direct and indirect trust values from both the multiple & 

single UAV domains, we introduce a novel paradigm for managing trust for an 

upgraded Tiny FL powered by a semi-centralized network. The model offers 

greater resilience enhanced scalability, and defense against threats, including 

changing trust updating by taking into account both direct and indirect trust, all of 

which are crucial for timely and comprehensive operations in UAV systems. 

Through the use of a decay function with communication time elements, 

calculation time, along block production time in each round of E-tiny FL, direct 

trust is calculated based on the past experiences of the evaluating UE. Combining 

suggestions from UAVs inside and between domains can result in indirect trust. 

By comparing their recommendation-providing acts, UAVs' trust 

recommendations can be evaluated for credibility. 
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• The optimisation of the sensing time, as well as the secondary transmission 

power, is done after a non-convex optimisation problem is formulated to maximise 

the energy efficiency of the UAV is done simultaneously. The suggested Optimised 

Alternating Dichotomy Optimisation (OADO) algorithm, which can handle 

constrained energy management and spectrum scarcity, provides the best result. 

• To assess the UAV's energy efficiency, outcomes of a computer model vs. various 

system specifications are provided, the system's actions are examined. The 

Optimization method and the single optimization strategy, which solely uses set 

transmission power to maximise sense time, are compared with the suggested 

OADO algorithm to assess the algorithm's efficiency. Our proposed ETFNET-

based optimization techniques, which update the reliable E-tiny FL model for UAV 

systems, assume a loss function that is both smooth and strongly convex, and that 

not only accounts for the heterogeneous data of user experience (UEs) but also 

characterises the balance between user energy costs and local computing time, 

global communication duration, and block-producing time.  

• The results of our experiment validate the effectiveness of our ETFNET model 

when recording dynamically harmful acts of UE in each FL session. A comparative 

study shows that our suggested ETFNET model works better than current trust 

models. Our method successfully defends against poisoning assaults and maintains 

convergence even in the face of malevolent UE attacks. 

 

This is how the remainder of the paper is structured. The UAV versus channel design power 

model are explained in chapter II, along with an analysis of the various scenarios under the 

spectrum access policy and FL techniques. In Section III, the problem of optimization under 

numerous restrictions is stated. In chapter IV, our suggested approach and transmission 

power. The simulation results are shown in Section V, as Section VI wraps up with our 

conclusions. 

 

II RESEARCH REVIEW  

FL's benefits—including data division, confidentiality safeguarding, the decentralized 

machine learning model, communication exchange, while system and data heterogeneity—

have attracted a lot of attention [13]. Concerns have recently been raised about the 

incorporation of FL into systems of UAVs for several research projects, including FL for 

multi-access edge computing in multitier networks, FL for 6G UAVs, and FL enables 

UAV-supported multi-access computing at the edges has been proposed for a variety of 

IoT applications as IoT networks evolve [14]. The increasing focus on WFL in mobile IoT 

systems with limited resources is a result of the restricted computational power, energy, 

and transmitting bandwidth in IoT systems. Rapid convergence and precise FL over lossy 

radio channels along with limited communication resources have been investigated in 

mobile IoT systems by concurrently optimizing communication efficiency as well as 

resource allocation. 

 Furthermore, not much research has been done on the overlay FL system based on 

UAVs sensing time. This research examines the assignment it is recommended to combine 

secondary transmission power or sensing time in a realistic network design using a single 

UAV and an overlay FL network. In this system, the unmanned aerial vehicle (UAV) is 

utilized to conduct round-the-clock ground surveillance and communicate with the base 

station (BS) at every interval of the flight. Since energy management will have an impact 

on SU's throughput [15], our objective is to maximize UAV energy efficiency while 

ensuring PU's quality of service.  The energy used by the UAV for flying, hovering, 

spectrum sensing, and sustaining communication with the BS is all included in its energy 

usage. Consequently, power distribution, sensor time along with flying time all have an 

impact on the overall energy consumption. Since there aren't many accomplishments about 

detecting duration in overlay CR using UAVs systems, this study jointly studies the impact 

of monitoring power distribution over time on SU to reach the highest possible level of 
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energy efficiency [16]. We provide an algorithm based on the dichotomy technique and 

alternating optimization to obtain the optimal solution, and we relate it to the optimisation 

of particle swarms methodology. 

 Lately, tiny federated learning is receiving more and more focus. In order to 

produce compact distributed machine learning for IoT devices with limited resources, a 

pruning model for FL was developed [17]. By dispersing little data storage on collaborative 

learning using Bayesian classifiers in IoT devices, the tiny was developed to improve 

energy efficiency, decrease latency, and lower communication costs on IoT devices. A 

proposal was made for a cooperatively trained robust initialization for the neural network 

model through an online mini-federated process of meta-process. These studies, however, 

do not take into account the rapid convergence of the global model for wireless transmission 

and IUAV in micro FL. Furthermore, in networks where the UE communicates via wireless 

links, the radio dependability of UEs significantly affects model security for micro FL in 

IUAVs. The application of blockchain technology to improve WFL security has received a 

lot of interest [18]. The blockchain-enabled FL architecture for digital twin wireless 

networks was created to improve system security and dependability. The trustworthy FL 

architecture provided by blockchain was created to enhance the FL system's accountability 

as well as fairness. 

Underlay mode, when the power of the UAV is restricted to meet the PU's QoS 

prerequisite, has been the subject of recent studies [19]. For example, the underlay 

operation mode, which requires PU's data rate threshold to be met, minimizes the drone's 

overall energy consumption for the CR-UAV system. To allow SU and PU to broadcast 

signals concurrently, UAV-based relays were used, as the authors of [20] described an 

uplink MIMO CR system. Due to the additional limits imposed by the use of the beneath 

mode, the power of the gearbox of the SU must be taken into account, further complicating 

the problem. 

 

III RESEARCH METHODOLOGY  

To examine UAV networking operations using FL, this chapter presents the following 

model: My following UAV or the leader UAV make up a single group of system, alongside 

the believers UAVs making up the collection I. UAV L represents the  UAV, while UAV j 

(j α I) represents each following UAV. The UAV group keeps a particular formation while 

flying at a set altitude and speed in the same direction. FL is used by UAVs acting as leaders 

and followers to collaborate on activities involving machine learning including target 

recognition and trajectory planning. In Figure 1, the general architecture is displayed. 

 

Figure: 1 System Architecture  

 

Wireless communication between UEs and UAVs in FL-enabled E-UAV networks is not 

only resource-intensive but also inconsistently reliable. Furthermore, the resource 
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constraints of devices limit their capabilities. Three tiers of a comprehensive ETFNET 

network framework can be organized to simplify trust management and lower the 

blockchain's related storage and processing overhead: Level 1, Level 2, and Level 3. 

The framework can have two domains: intradomain and interdomain, using several 

FL kinds. Compared to communication between distinct domains, intradomain 

communication occurs significantly more frequently. When downlink baseline signal's 

power was received allows the UE to associate with a UAV, and the uplink access is the 

same UAV as the downlink. A collection of UEs in the same physical area, like UEs linked 

to the unique UAV, might be referred to as a domain in this study. 

A portion of the circular flight is carried out by the UAV to carry out data transfer, 

spectrum detection, & ground investigation using the simultaneously slotted paradigm. 

Each time slot has a duration of "t," the sensor time is represented by "s," as well as the 

broadcast duration is represented by "ta." We estimate that the entire cost of spectrum sensor 

and information transmission is t2, with the remaining half of each time slot dedicated to 

surveillance. Furthermore, a workable method for reducing the energy consumption of 

wireless sensor networks (WSNs) equipped with unmanned aerial vehicles is the 

implementation of a sleep and wake mechanism. Because there is still time following 

spectrum in the initial part of the time slot detection and data transmission, sleep mode is 

added to conserve energy. While in sleep mode, all of the parts cease to function, leaving 

only the energy required for hovering and the fundamental energy required to keep the 

UAV's aerial equipment operating. Take note of the periodic spectrum sensing's frame 

structure. 

f(ω) = ∑
njfj

n
jεJ

… … … … … … … … … … … … … … … . (1) 

 

ETFNET -Based Network Management for UAV 

In this paradigm, a server phase as well as numerous learning routers that match UAV l as 

well as UAV j make up a comprehensive federated learning structure.  After obtaining the 

global design W(s − 1), the learning nodes calculate the nearby slope Δ(w(s − 1)) or transfer 

it to the server in each round s. The model parameters are updated by the server by 

aggregating the gradients, running the optimization process, and broadcasting the revised 

model parameters to every learning node. In this study, we choose learned nodes locally 

and allow some of them to operate bypass specific communication cycles to reduce the 

requirement for creating communication links. 

ω(t) =  ω(s − 1) − π∇J
s−1 … … … … … … … … … … … … … … (2) 

Local computing problems and global aggregation challenges are the two 

categories into which FL problems fall. The WFL system is made up of k UAVs and u UEs 

together with edge servers. As they gather the local model variables for every UE during 

the FL process, UAVs are essential to the parameter aggregation process. Since Wave is 

used to connect UAVs, information transmission delays between UAVs can be disregarded. 

Even if each UAV can have a power of up to 200 w, E-Tiny FL can train collected 

information at ultra-low power microprocessors and other tiny devices.  We leave the 

expenses of Inter-UAV networking along with computation for upcoming projects and 

concentrate on the energy and latency of small UE in this research. Every UE (represented 

by u) possesses a local data collection of size Zu and the entire data set's size is acquired 

using Z=∑ Zu
U
u=1 , 

Where Zu={(X1, Y1) … … … … . . (XZu, YZu)} symbolizes the UE u data collection. 

The data produced or gathered by UE is denoted by the componentXu, and the label that 

corresponds to Xu is indicated byYu. The objective of FL is to use the loss function, namely 

is linked to the UE data set and expressed as follows, to determine the model e 

characteristics that characterize the result  Yu. 
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Pu =
1

Zu
∑ p (e)

Zu

u=1

… … … … … … … … … … … … … … … … (3) 

IV EVALUATION OF THE SYSTEM 

This section provides a numerical analysis of the effects of sensors time and transmitting 

power on the overlay mode (circular flying) efficiency of the UAV. Examined is the UAV 

detection spectrum performance in the synchronous slotted design. Additional selected 

system factors, such as flying radian and flying radius, are considered in the subsequent 

study. 

Analysis Setting: In this section, we use Loss functions for multinomial logistic 

regression as well as cross-entropy errors to verify our proposed trust management system 

of ETFNET using real federated datasets, MNIST5 and FEMNIST7. The different sample 

sizes in these datasets show that FL is capable of handling non-IID data. For MNIST5, 

three of the ten labels are covered by each UE. On the other hand, data from the extended 

MNIST is separated to create FEMNIST7. 25% of the datasets are used for testing, while 

the remaining 75% are split at random for training. There are exactly 100 UEs in all. Since 

FL techniques are allowed to sample randomly, the highest possible number of local and 

global phases can be set to 40 as well as 600, accordingly, while the greatest number of UE 

getting involved in each cycle can be set to 10.  The other simulation-related experimental 

parameters are provided in Table I. 

 

Table 1 : Parameter of the System 

Component Value Component Value 

P(dB) 8 t(s) 2 

N 153 PSs(dB) -4 

B(KHz) 3000 α 7.018 

R(n) 400 β 0.56 

PS(dB) -10 H(M) 400 

 
Figure: 2 The mean energy usage of secondary UAVs across a range of µ values. (a) The 

total amount of energy used. (b) Changing how much energy is used. (c) Energy use for 

communication. (d) Energy usage for computation. 

The likelihood that Zu will transmit information when Pu is present is known as the 

collision probability. The graphic illustrates that there is a single ideal recognising the time 

value to attain the most energy conservation and that the likelihood of a collision decreases 

as α increases. The rationale is that when α increases, the spectrum detecting energy 

increases, considering the likelihood of a false alarm (pf) falls. Therefore, by optimizing 
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the sensing time, It is important to strike a balance between sensing energy with false alarm 

likelihood. Moreover, the graphic illustrates how energy efficiency decreases as S grows. 

This is because the UAV travels longer away from the PU as αS increases from 0 to α /2, 

increasing route loss in the process. Furthermore, for sensing times greater than 0.7s, the 

average energy efficiency is found to be almost the same, suggesting that αS has minimal 

bearing on communication efficiency when α > 0.7s. 

In a comparison between our suggested approach and an analogous previous study. 

However, this method uses CPU frequency, downlink broadcasting time, and uplink 

transmission duration as controllable factors, with the optimization goal being to achieve 

the smallest every FL round's delay. When compared to NOMA, our approach reduced 

latency by 49.9% under the same environmental conditions. This suggests that there is 

potential for more research into a particular optimization problem, where the UAVs' 

communication power and CPU frequency are used as optimization elements. 

 

V CONCLUSIONS 

The UAV in our suggested system circles the base station while conducting information 

transmission and periodic spectrum sensing. We suggested an approach based on 

dichotomy and alternating optimization to simultaneously optimize the secondary 

transmission power and maximising the UAV's energy efficiency by sensing time. The 

programme effectively achieves the optimal assignments for secondary transmission power 

along with sensing time. To mitigate the impact of malicious UEs in small FL, we 

developed a quantifiable trust model of UE by merging direct and indirect trust, considering 

a decay function and recommendation credibility for the trust model to aggregate 

parameters in resource-constrained UAV networks. To achieve the trade-offs between 

compute time, communication time, block-producing time, energy consumption, and 

credibility evaluation for blockchain-enabled E-tiny FL, we merged the trust model of tiny 

ETFNET with wireless resource allocation. By doing this, UEs were able to contribute to 

the rapid convergence of E-tiny FL in UAV system while preserving energy economy and 

trust. It appears that the UAV and FL network integration technology is workable and 

effective. Future research on potential subjects to expand on our findings might look into 

energy harvesting, spectrum access policy, inadequate use of the spectrum, and analysis of 

the impact of the flight trajectory. 
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