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Exponential Life Time Binary Search Tree 

Albandari Mohammed Ali Al Badi Aldawsari* 

 
 

Abstract 

The random tree theoryis useful in investigating the equivalent conductance of a random 

conductance network. Statistical considerations are introduced in network graph theory 

by replacing the exact average value of  trees of the network by the average product of 

the conductance of a random sample of N-1 branches drawn without replacement from 

the population of B branches. The case of a binary distribution of conductance has 

treated and it was found that random trees theory is consistent with effective medium 

theory applied to the same case. It is supposed that these periods of times are independent 

identically distributed with exponential distribution with parameter 1. The essential focus is on 

the successful and unsuccessful searching. For the introduced random variables the mean is 

given, variance and asymptotic distribution. Law of large numbers is also established. 

 
Keywords: Random Tree, Binary Search Tree, Exponential Distribution. 

 

1. Introduction 
Each model carries a coherent set of algebraic and analytic techniques, which we illustrated 

by reviewing a few c1haracteristic examples. In mathematics and computer science, a 

random tree is a tree or arborescence that is formed by a stochastic process. The theory of 

records in sequences of independent identically distributed random variables leads to 

simple proofs of various properties of random trees, including the limit law for the depth 

of the last node of randomly ordered trees, random union-find trees, and random binary 

search trees. we will presented classes of random tree models that occur in the average 

case analysis of a variety of computer algorithms, including symbolic manipulation 

algorithms, comparison based on searching and sorting digital retrieval techniques, 

systems and communication protocols. Each model carries a coherent set of algebraic and 

analytic techniques, which we illustrated by reviewing a few characteristic examples. In 

mathematics and computer science, a random tree is a tree or arborescence that is formed 

by a stochastic process. The theory of records in sequences of independent identically 

distributed random variables leads to simple proofs of various properties of random trees, 

including the limit law for the depth of the last node of randomly ordered trees, random 

union-find trees, and random binary search trees. 

 
In This paper, we consider a binary search tree and we study some of their practical aspect. The 

interest concerns here the natural growth of binary search trees and it is proposed to give some 

new analytical results under some realistic hypotheses. The hypotheses tell that every external 

node have gives two new nodes after a random period of time. It is supposed that these periods 
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n n 

of times are independent identically distributed with exponential distribution with parameter 1. 

The essential focus is on the successful and unsuccessful searching. For the introduced random 

variables the mean is given, variance and asymptotic distribution. Law of large numbers is 

established. 

 

2. Unsuccessful searching 

Notations: For a binary search tree Tn with size n we denote by 

 

(a) T̃n the number of comparisons consumed by an unsuccessful search in Tn to insert a new 

key. 

 
(b) Xnk the number of external nodes at level k of Tn. 

 
The model: In our model we suppose that to go from a node x to any neighbor node y we 

consume a random time having Exponential distribution with parameter 1. We suppose also 

that all these Exponential random variables are independent . This is our extension comparing 

with M. Hosam 1992. 

 
Remark 1. 

 
(rm1) T1 , T2 , T3 , T4 , · · · , Tn are iid random variables with exponential distribution with 

parameter 1. 

 

(rm2) Let Dk the depth of xk in Tn 

 

(rm3) for our model T̃k can be written as 

T̃k  =T1 +T2 +···+TDk 

Proposition  1.  The  random  variable  T̃n  is  a  continuous  random  variable  with  probability 

density function ̃fn given by 
 

n−1 2 n k − 1 
̃fn(x) = ∑ 

k=1 

 
 

(n + 1)! 
(   ) x  exp(−k) , for x ≥ 0. 

k T(k) 

 

Proof:We have  T̃n  =  T1,  T2,  T3,  T4,  .........,  TDn  .  Let ̃fn(x) =  P(T̃n  ≤  x)  be the  cumulative 

distribution function of T̃  . We know that ̃f  (x) =  
∂   

F̃n  (x). We have 
∂X 

 

𝐃𝐧 

F̃n(x) = 𝐏 (∑ Ti  ≤ x) 
𝐢=𝟏 

k 
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k 

∞ 

 

n−1 k 

= ∑ 𝐏 ( [∑ Ti ≤ x] ∩ [Dn = k]) 

k=1 i=1 

 
n−1 k 

= ∑ (Dn = k) × 𝐏 ( ∑ Ti ≤ x) 
k=1 i=1 

 
 

 

The last equality is due to the fact that Dn is independent of the sequence (T1, T2, T3, T4,··· Tk). 

But using theorem of Lynch (1965) we know that P(Dn 

we know that for all integer k the summation 

= k) =  
2k 

(n+1)! 
(n). On the other hand 

 

T1 + · · · + Tk is distributed like Gamma(k, 1). Then we conclude that 
 

n−1 
2 n x yk−1 

F̃n(x) = ∑ 
k=1 

 
 

(n + 1) 
(  ) ∫ 

k 0 

 
 

T(k) 
exp(−y) dy. 

 

and we deduce the value of F̃n(x) by differentiating. 

Proposition 2. The mean of T̃n  is given by 

 

 

 

[T̃  ] = 2 [
1 

+ 
1 

+ ⋯ + 
1    

] 
   

n 2 3 n + 1 
 

= 2[Sn+1 − 1] ≈ 2In(n + 1), 
 

 
Where S 

 
1 1 1 = [1 + +   + ⋯ +   ]. 

   

n 2 3 n 
 

Proof : the probability density function ̃fn(x) can be written as 
 

n−1 1 
∑ 2kxk−1 ( ) 

n
 

(n + 1)! (k − 1)! 
 

k=1 

exp −x (  ). 
k 

 

Then : 
 

 
n−1 

1 n 
E[T̃n] = 

 
 

(n + 1)! (k − 1)! 
∑ ∫   2kxke−X ( 

k=1   0 k
 
) dx 
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n−1 
1 n 

= 
(n + 1)! (k − 1)! 

∑ 2k ( 
k 

k=1 

n−1 

) ∫  xke−Xdx 
0 

1 k 
= 

(n + 1)! (k − 1)! 
∑ 2

 
k=1 

n 
( ) T(k + 1) 

k 

 
 

n−1 
1 n = k 

 
 

 
n−1 

2 
 

 

 
k−1 

n 

(n + 1)! 
∑ 2

 
k=1 

k (
k

) = 
(n + 1)! 

∑ 2
 

k=1 

k (  ) 
k 

 
2 

= 
(𝑛 + 1)! 

𝑓(2)
 

 
Where 𝑓(2) = ∑𝑛−1 2𝑘−1𝑘(𝑛). Put (𝑥) = ∑𝑛−1 𝑥𝑘(𝑛), then 

𝑘=1 𝑘 𝑘=1 𝑘 

 
 

𝑛−1 
𝑔′(𝑥) = ∑ 𝑥𝑘−1 

𝑛 
( ) 

 

𝑘=1 

𝑘 ( 
𝑘 

) = 𝑓𝑛 𝑥 . 

 

On the other hand (𝑥) can be written as 

(𝑥) = 𝑥(𝑥 + 1) · · · (𝑥 + 𝑛 − 1). 

 
By differentiating the function 𝑔 and replacing 𝑥 by 2 we conclude that 

 

1 1 1 
𝑓(2) = (𝑛 + 1)! [

2 
+ 

3 
+ ⋯ + 

𝑛 + 1
]. 

We conclude the result of the proposition. 

 

Proposition 3. The variance of �̃�𝑛is given by 

𝑉𝑎[�̃�𝑛] = 4𝑆𝑛+1  − 5, 
 

Where 𝑆 1 1 1 = [1 + +   + ⋯ +   ]. 
   

𝑛 2 3 𝑛 

Proof: we have 

𝑉𝑎(�̃�𝑛) = 𝐸(�̃�2) − (𝐸(�̃� ))2 

 

(𝐸(�̃�𝑛 

𝑛 

))2= 4 [ 
1

 
(2) 

 
+  

1 

(3) 

𝑛 

+  
1 

(4) 
+ ⋯ + 

1     
]2 

(𝑛+1) 

∞ 
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𝑘 

(  ) 𝑘 

( 

( 

And  
∞ 𝑛−1 

 
2𝑘 

 
(𝑛) ∞ 

((�̃�𝑛)2) = ∫   𝑥2𝑓�̃�   (𝑥)𝑑𝑥 = ∑   𝑘     ∫   𝑥2𝑥𝑘−1𝑒−𝑥𝑑𝑥 
𝑛 

0 𝑘=1 
(𝑛 + 1)! (𝑘)   0 

 
 
 

𝑛−1 
 

2𝑘 
 

(𝑛) ∞ 
 

𝑛−1 
 

2𝑘 
 

(𝑛) 
= ∑ 𝑘   ∫   𝑥𝑘+1𝑒−𝑥𝑑𝑥 = ∑ 𝑘   (𝑘 + 2) 

 

𝑘=1 
(𝑛 + 1)! (𝑘) 0  

𝑘=1 
(𝑛 + 1)! 𝑇(𝑘) 

 
 

𝑛−1 
 

2𝑘 

 
𝑛 (𝑘 + 1)! 

 
𝑛−1 

 

2𝑘−1 𝑛 
= ∑ 

(𝑛 + 1)! 
(
𝑘

) 
(𝑘 − 1)! 

= 2 ∑ 
(𝑛 + 1)! 

(𝑘 + 1)(𝑘) ( ) .
 

𝑘=1 𝑘=1 

 

Let the function 𝑓defined by (𝑥) = ∑𝑛−1 𝑥𝑘+1(𝑛), then 
𝑘=1 𝑘 

 
 

𝑛−1 𝑛−1 

𝑓′(𝑥) = ∑(𝑘 + 1)𝑥𝑘 (
𝑛

) 𝑎𝑛𝑑 𝑓′′(𝑥) = ∑(𝑘)(𝑘 + 1)𝑥𝑘−1  
𝑛

) 
𝑘 𝑘 

𝑘=1 𝑘=1 

 

 

and we remark that 𝐸((�̃�𝑛 

 

)2) =  
2 

(𝑛+1)! 
𝑓′′(2). 

 
 

 

On the other hand we have 
 

𝑛−1 
𝑛 

𝑓 𝑥  = 𝑥 ∑ 𝑥   (  ) , 
𝑘 

𝑘=1 
 

 
𝑓(𝑥) 

𝑛−1 

= 𝑥 ∑ 𝑥𝑘 
𝑛

) 
𝑘 

𝑘=1 
 

𝑛−1 

(𝑥) = 𝑥2 𝖦(𝑥 + 𝑘) 

𝑘=1 
 

𝑛−1 

(𝑥) = 𝑥2 𝖦(𝑥 + 𝑘). 

𝑘=1 
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Then 
 

𝑛−1 𝑛−1 𝑛−1 

𝑓′(𝑥) = 2𝑥 𝖦(𝑥 + 𝑘) + 𝑥2 ∑    𝖦   (𝑥 + 𝑙) 

𝑘=1 𝑘=1 𝑙=1,≠𝑘 
 

𝑛−1 𝑛−1 𝑛−1 

𝑓′′(𝑥) = 2 𝖦(𝑥 + 𝑘) + 2𝑥 ∑    𝖦   (𝑥 + 𝑙) 

𝑘=1 𝑘=1 𝑙=1,≠𝑘 
 

𝑛−1    𝑛−1 

+2𝑥 ∑ 𝖦 (𝑥 + 𝑙) 

𝑘=1 𝑙=1,≠𝑘 
 

𝑛−1 𝑛−1 𝑛−1 

= 𝑥2 ∑  ∑ 𝖦 (𝑥 + 𝑗) 

𝑘=1 𝑙=1,≠𝑘 𝑗=1,𝑗≠𝑙,𝑗≠𝑘 
 

𝑛−1 𝑛−1 𝑛−1 𝑛−1 𝑛−1 𝑛−1 

𝑓′′(2) = 2 𝖦(2 + 𝑘) + 8 ∑    𝖦   (2 + 𝑙) + 4 ∑    ∑ 𝖦 (2 + 𝑗) 

𝑘=1 

 
= 2 × [3 × 4 × … × (𝑛 + 1)] 

𝑛−1 

𝑘=1 𝑙=1,≠𝑘 𝑘=1 𝑙=1,≠𝑘 𝑗=1,𝑗≠𝑙,𝑗≠𝑘 
 
 

𝑛−1 𝑛−1 
8 2 × 3 × 4 × … × (𝑛 + 1) 4 2 × 3 × 4 × … × (𝑛 + 1) 

+  ∑ 
2 

𝑘=1 

(2 + 𝑘) 
+ 

2 
∑ ∑

 
𝑘=1 𝐿=1 

 
 

(2 + 𝐿)(2 + 𝑘) 
 

𝑛−1 

(𝑛 + 1)! + 4 × (𝑛 + 1)! ∑ 

𝑘=1 

1 
 

 

2 + 𝑘 

𝑛−1 

+ 2(𝑛 + 1)! ∑ 

𝑘=1 

1 
 

 

2 + 𝑘 

𝑛−1 

∑ 

𝐿=1 

1 
 

 

2 + 𝐿 

 

𝑛+1 
1 

= (𝑛 + 1)! [1 + 4 ∑ 
𝑖 

𝑖=3 

𝑛+1 

+ 2( ∑ 

𝑚=3 

𝑛−1 
1 1 

)(∑   )] 
𝑚 𝑝 

𝑝=3 
 

1 1 1 
= (𝑛 + 1)! [1 + 4 (𝑆𝑛+1 − 1 − 

2
) + 2 (𝑆𝑛+1 − 1 − 

2
) (𝑆𝑛+1 − 1 − 

2
)] 

 

 = (𝑛 + 1)! [1 + 4𝑆 3 − 4 − 2 + 2(𝑆 2 
 

 

 

𝐸((�̃�𝑛 

 
)2) = 

2
 

𝑛 + 1! 

 

 
𝑓′′(2) 

𝑛+1 𝑛+1 − 
2

) ] 

 

𝐸((�̃�𝑛 
)2) = 

2
 

(𝑛 + 1)! 

 

× (𝑛 + 1)! [1 + 4𝑆𝑛+1 
 

− 6 + 2(𝑆𝑛+1 − 
3 

)2] 
2 

 

Then 
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𝑘=1 

   

→ 

𝑉𝑎(�̃�𝑛) = 𝐸(�̃�2) − (𝐸(�̃� ))2 
𝑛 𝑛 

 

 = −10 + 8𝑆 

 

3 + 4(𝑆 2 
 

 

 
 − 1)2 

𝑛+1 
𝑛+1 − 

2
) 

− 4(𝑆𝑛+1 

 

 
= −10 + 8𝑆 + 4 [𝑆2 + 

9 
− 3𝑆 

 

− 𝑆2 − 1 + 2𝑆 ] 
𝑛+1 𝑛+1 4 𝑛+1 𝑛+1 𝑛+1 

 

= −10 + 8𝑆𝑛+1 + 9 − 4𝑆𝑛+1 − 4 

 

= −5 + 4𝑆𝑛+1  = 4𝑆𝑛+1 − 5 
 

𝑉𝑎(�̃�𝑛) = 4𝑆𝑛+1 − 5 

 

Theorem 1. The random variable 𝑇
̃𝑛−𝐷  

converges in distribution to a standard normal variable 
√2𝐷𝑛 

with mean 0 and variance 1. 

 
Proof: 

 
We know that 

 

 
(a) 

     𝐷𝑛 
𝑷

 
1, 

2 𝐼𝑛 (𝑛) 𝑛 → +∞ 

 
(b) and if T , T , T , T , · · · are iid with distribution Exp(1), then𝑊𝑛−𝑛 converges in distribution 

1 2 3 4 
√𝑛 

to a standard normal variable with mean 0 and variance 1, 
 

where 𝑊𝑛  = ∑𝑛 𝑇𝑘. 
 

Then  
 

�̃�  − 𝐷𝑛 𝑊𝐷𝑛  − 2 𝐼𝑛(𝑛) 2 𝐼𝑛(𝑛) − 𝐷𝑛 

     =    +    
√𝐷𝑛 √𝐷𝑛 √𝐷𝑛 

 
 

 

At first we have ( Brown and Shubert, 1984 ) 

 

𝐷𝑛 − 2 𝐼(𝑛) 𝐷𝑛 − 2 𝐼𝑛(𝑛) 2𝐼𝑛(𝑛) 
= × √ 𝐷 √2𝐼(𝑛) 𝐷 → 𝑁1(0,1) × 1 

√  𝑛 𝑛 

 

the other have we write : 
 

𝑊𝐷𝑛 − 2𝐼(𝑛) 
   = 

√𝐷𝑛 

𝑊2𝐼(𝑛) − 2𝐼𝑛(𝑛) 
   

√𝐷𝑛 
+ 

𝑊𝐷𝑛 − 𝑊2𝐼(𝑛) 

√𝐷𝑛 
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= 

we have 

(i) using( b) 𝑛 =̃  𝐼𝑛(𝑛) we can deduce 

 
 

𝑊2𝐼(𝑛) − 2𝐼𝑛(𝑛) 𝑊2𝐼(𝑛) 2𝐼(𝑛) 

√𝐷𝑛 
= × √ 

√2𝐼(𝑛) 𝐷𝑛 
→ 𝑁2(0,1) × 1 

 

(ii) For the second  

 
𝑊𝐷𝑛 − 𝑊2𝐼(𝑛) 

 
 

∑𝐷𝑛 

 
 

𝑇 − ∑
2𝐼(𝑛) 

𝑇
 

|    
√𝐷𝑛 

| = |   𝑘=1   𝑘 𝑘=1 𝑘| 
 

√𝐷𝑛 

 
∑2𝐼(𝑛) 𝑇 

≤ |
   𝑘=𝐷𝑛 𝑘

|
 

√𝐷𝑛 
 

2𝐼(𝑛) − 𝐷𝑛⌈𝑚𝑎𝑥𝐷𝑛 ≤ 𝑘 ≤ 2𝐼𝑛(𝑛)⌉𝑇𝑘 
≤ | | 

√𝐷𝑛 
 

2𝐼(𝑛) |1 − 
    𝐷𝑛 | 

𝑚𝑎𝑥𝐷 

 
≤ 𝑘 ≤ 2𝐼(𝑛)|𝑇 | 

≤ | 
2𝐼(𝑛) 𝑛 𝑛 

| 
√𝐷𝑛 

 
We conclude that:  

 

�̃�𝑛  − 𝐷𝑛 
     → 𝑁1(0,1) + 𝑁2(0,1) 

√𝐷𝑛 
 
 

We have 𝑁1(0,1) and 𝑁2(0,1) are independent because T1, T2, T3, T4, · · · is sequence and 

independent of 𝐷𝑛. But 𝑁1(0,1) + 𝑁2(0,1)𝒟 𝑁(0,2). 

 

Finally𝑇
̃𝑛−𝐷𝑛   𝒟   (0,1). 
√2𝐷  = 

3. Successful Searching 

 
Definition 1. Let 𝑇𝑛 be a Binary Search Tree withe size 𝑛 (having 𝑛 internal nodes so 𝑛 + 1 
external nodes) . We denote by 𝑋𝑛, the random number of external nodes at level k. The 

random variable 𝑀𝑛, denotes the number of internal node at level k. 
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Example 1. For the following tree we have 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A complete binary tree 

 

 
 

𝑋6,0 = 0, 𝑋6,1 = 0, 

 
𝑋6,2 = 2, 𝑋6,3 = 4, 

 
And 

 
𝑀5,0 = 1, 𝑀5,1 = 2, 

 
𝑀5,2 = 2, 𝑀5,3 = 0. 

 
Proposition 4. The number of internal nodes at level k satisfies the following recursion : For 

all k = 0, 1, 2, · · · , 𝑛 − 1 we have 
 

𝑛 

𝑀𝑛,𝑘 = ∑ 

𝑗=𝑘+1 
 
 

Proof: By induction,for 𝑘 = 𝑛 it is clear that 𝑀 

𝑋𝑛, 

2𝑗−𝑘 . 

 
= ∑𝑛 

 
 
 

 𝑋𝑛, = 0. 
 
 

For 𝑘 ∈ {0,···, 𝑛 − 1} put 𝑁 

 

= ∑𝑛 
 

 𝑋𝑛,𝑗 
.
 

𝑛,𝑛 𝑗=𝑛+1 2𝑗−𝑛 

𝑛,𝑘 𝑗=𝑘+1 2𝑗−𝑘 

 

 
We prove that , 𝑁𝑛,𝑘 = 𝑀𝑛,𝑘 , and 

 

𝑛 

𝑁𝑛,+1 + 𝑋𝑛,𝑘+1 = ∑ 
𝑗=𝑘+2 

𝑋𝑛,𝑗 

2𝑗−(1+𝑘) 
+ 𝑋𝑛,𝑘+1 
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𝑛 

 

𝑛 

= ∑ 

𝑗=𝑘+2 

𝑋𝑛,𝑗 

2𝑗−1−𝑘 
+ 𝑋𝑛,+1 

 

𝑛 𝑛 

=  ∑  
𝑋𝑛,𝑙+1 

+ 
𝑋𝑛,𝑘+1  

= ∑ 
𝑋𝑛,𝑙+1 

 

𝑙=𝑘+1 
2𝑙−𝑘 2𝑘−𝑘  

𝑙=𝑘 
2𝑙−𝑘 

 

𝑛 
𝑋𝑛,𝑗 

𝑛 
𝑋𝑛,𝑗 

= ∑ 

𝑗=𝑘+1 
2𝑗−1−𝑘 = 2  ∑ 

𝑗=𝑘+1 
2𝑗−𝑘 

= 2𝑀𝑛,. 

 

So 𝑁𝑛, satisfies (3.1) with 𝑁𝑛,𝑛 = 0. Then 𝑁𝑛, = 𝑀𝑛,𝑘∀𝑘 ∈ {0, … , 𝑛 − 1}. 
 

Theorem 2. (Lynch (1965)) We have 
 

𝑛 

 
 

𝐸[𝑋 ] 

 

 
2𝑘 𝑛 

𝐸[𝑀𝑛,𝑘 ] =  ∑ 

𝑗=𝑘+1 

𝑛,𝑗 

2𝑗−𝑘 
= 

𝑛! 
∑ ( ) 

𝑗 
𝑗=𝑘+1 

 

We now turn to study the depth of an internal node. denote by �̃�𝑛  the depth of an internal node 

chosen at random. �̃�  is the time required to reach an internal node chosen at random. Then it is 
clear that for our model, we have: 

 

�̃�𝑛  = 𝑇1  + 𝑇2  + 𝑇3  + 𝑇4  + ⋯ + 𝑇𝑆𝑛 
, where, 𝑇1, 𝑇2, 𝑇3, 𝑇4, … , 𝑇𝑛, …, are iid with exponential 

distribution with parameter 1 and �̃�𝑛  is the depth of an internal node chosen at random as in 
the book by Mahmoud, H. (1992). 

 
 

Lemma 1. The process 𝑀𝑛,, 0 ≤ 𝑘 ≤ 𝑛 satisfies the following recursion : 

 

2𝑀𝑛, = 𝑀𝑛,𝑘+1 + 𝑋𝑛,𝑘+1, 𝑘 ≤ 𝑛 − 1, 

 
with the condition 

 
𝑀𝑛, = 0, 𝑀𝑛,0 = 1. 

 

Let �̃�  be the time consumed to successful searching at random an internal with depth 𝑆𝑛 

node . It is easily to see that �̃�  = 𝑇1  + 𝑇2  + 𝑇3  + ⋯ + 𝑇𝑆𝑛
 

Where , as in the last section , 𝑇1, 𝑇2, 𝑇3, … are independent identically distributed random 
variable with exponential distribution with parameter 1.as in the lest section we propose to 

compute the mean , the variance and the probability density function of �̃�𝑛. 

Theorem 3. The probability density function of �̃�𝑛is given by 
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�̃� 

𝑛 

 

 
𝑓�̃� 

 
(𝑥) = 

1 
𝑛−1 

(2𝑥)−1 
∑ 

𝑛 

𝑒−𝑥 ∑ (
𝑛
 

 
) , ∀𝑥 ≥ 0. 

𝑛 𝑛  
𝑘=1 

(𝑘 − 1)! 𝑗 
𝑗=𝑘 

 
 
 

Proof:  

 
𝑓�̃�𝒏 

 
 
(𝒙) = 𝐹′   (𝑥) = 𝑷(�̃� 

𝑛 

 

 
≤ 𝑥) 

 

𝑆𝑛 

𝐹�̃�𝑛 
(𝑥) = 𝑷(∑ �̃�𝑖  ≤ 𝑥) 

𝑖=1 
 

𝑛−1 𝑘 

= ∑ 𝑷((∑ �̃�𝑖  ≤ 𝑥) ∩ (𝑆𝑛  = 𝑘)) 
𝑘=1 𝑖=1 

 

𝑛−1 𝑘 

𝐹�̃�𝑛 
(𝑥) = ∑ 𝑷(𝑆𝑛  = 𝑘)𝑷(∑ �̃�𝑖  ≤ 𝑥) 

𝑘=1 𝑖=1 
 

According to ( Brown and Shubert 1984 ) we have 

 
(2)𝑘−1 𝑛 

𝑷(𝑆𝑛 = 𝑘) = ∑ ( ) 
𝑛(𝑛!) 𝑗 

𝑖=𝑘 
 

𝑘 

(∑ �̃�𝑖  ≤ 𝑥) = 𝑷(𝑋 ≤ 𝑥) 𝑋~𝑇(𝑛,1) 

𝑖=1 
 

𝑥 𝑦𝑘−1 
𝑷(𝑋 ≤ 𝑥) = ∫ 

 
𝑒−𝑦𝑑𝑦 

 
𝑛−1 

2𝑘−1 

0  (𝑘) 
 

𝑛 
𝑛 

 
 
𝑥 𝑦𝑘−1 

𝐹�̃�𝑛 (𝑥) = ∑ 

𝑘=1 

 
 

𝑛(𝑛!) 
∑ ( ) ∫ 

𝑗 
𝑗=𝑘 

 
 

𝑇(𝑘) 
𝑒−𝑦𝑑𝑦 

 

therefore  

 

𝑓�̃�𝑛 

 

 
𝑛−1 

2𝑘−1 

(𝑥) = ∑ 
𝑛(𝑛!) 

𝑘=1 

 
 

 
𝑛 

𝑛 
∑ ( ) 

𝑗 
𝑗=𝑘 

 

 
𝑥𝑘−1 
 

 

𝑇(𝑘) 

 
 
 
𝑒−𝑥 𝑥 ≥ 0. 

 
 

to obtain the expected value of �̃�𝑛(𝑥) we can use the probability function , using equation 
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𝑗 

 

 
𝐸[𝑋𝑛,𝑗] = 

2𝑗 (𝑛) 
 

 

𝑛! 
 

Using the last equation we are able to compute[�̃�𝑛]: 

Lemma 2. The expected value of �̃�  is given by : 
 

𝐸[�̃�   ] = 𝐸[𝑆 1 ] = 2 [1 +   ] 𝐻 
 

 
− 3, 

 
 Where 

𝑛 𝑛 
 
 

1 1 1 
 

   

𝑛 𝑛 

𝐻𝑛 = (1 + 
2 

+ 
3 

+ ⋯ + 
𝑛
). 

 

Proof: we have  

�̃�  = 𝑇1  + 𝑇2  + 𝑇3  + ⋯ + 𝑇𝑆𝑛
 

 

𝑆𝑛 𝑛−1    𝑙 

= ∑ 𝑇𝑘 = ∑ ∑ 𝑇𝑘1𝑆𝑛=𝑙. 

𝑘=1 𝑙=1 𝑘=1 

 
 
 

The sequence (𝑇1, 𝑇2, … ) is independent of 𝑆𝑛, then : 
 

𝑛−1    𝑙 𝑛−1 

𝐸[�̃�𝑛] = ∑ ∑ 𝐸[𝑇𝑘]𝑷(𝑆𝑛 = 𝑙) =  ∑ 𝑷(𝑆𝑛 = 𝑙). 
𝑙=1 𝑘=1 𝑙=1 

 

 
We conclude the proof using the results in the book of Hosam M. (1992) 

 
Remark 4. The random variables 𝑄1, 𝑄2, … , 𝑄𝑘 are independent and identically distributed 
with exponential distribution with parameter 1. A well known result says that 

 

𝑄1 + 𝑄2 + ⋯ + 𝑄𝑘 have as distribution (𝑘, 1), 

where the probability density function is given by𝑓𝑄1+𝑄2+⋯+𝑄𝑘 

 
(𝑥) = 𝑒−𝑥 

𝑥𝑘−1

. This gives the 
𝑇(𝑘) 

probability density function of �̃�𝑛: 

𝑛−1 
2𝑘−1    𝑛 

 
 

𝑛 𝑥𝑘−1 

𝑓�̃�𝑛 (𝑥) = ∑ 

𝑘=1 

 
 

𝑛(𝑛!) 
∑ ( ) 

𝑗 
𝑗=𝑘 

 
 

𝑇(𝑘) 
𝑒−𝑥 𝑥 ≥ 0. 

 

Using this probability density function we can write 
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𝑛 2 

𝑛 

𝑛 

𝑛 

𝑘1 

 

𝑛−1 
2𝑘−1 

𝐸(�̃�𝑛) = ∑ 
𝑛(𝑛!)

 

𝑘=1 

𝑛 𝑥 

∑ ( ) ∫ 
𝑗 

𝑗=𝑘 

𝑥𝑘 
 

 

𝑇(𝑘) 

𝑛−1 
2𝑘−1 

𝑒−𝑥𝑑𝑥 = ∑ 
𝑛(𝑛!) 

𝑘=1 

𝑛 
𝑛 

∑ ( ) 
𝑗 

𝑗=𝑘 

(𝑘 + 1) 
 

 

𝑇(𝑘) 

 

𝑛−1 
2𝑘−1    𝑛 

𝑛
 𝑛−1 𝑛 

𝑘 + 1 𝑛 
= ∑ 

𝑛(𝑛!) 
∑ (  )(𝑘 + 1) = 

𝑗 
 

 

𝑛(𝑛!) 
∑ 2𝑘−1 ∑ (  ) . 

𝑗 
𝑘=1 𝑗=𝑘 𝑘=1 𝑗=𝑘 

 

𝑛−1 𝑛 
= 

(𝑘 + 1) 
(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) = ∑ 2𝑘−1 

𝑛
 

𝑛(𝑛!)  
𝑘=1 

∑ (  ) . 
𝑗 

𝑗=𝑘 

 
 
 

Theorem 4. The variance of �̃�  is given by : 

12 

 

 
1 𝐻2 

𝑉𝑎[�̃�   ] = (4 + )  
 

− 4 (1 +    ) [ + 𝐻 ]. 
 

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 
 

Proof:We have 
 

𝑆𝑛 𝑆𝑛 𝑛−1 𝑙 

�̃�  = ∑ 𝑇𝑘, (�̃�𝑛)2 = (∑ 𝑇𝑘)2 = (�̃�𝑛)2 = ∑ 1𝑆   =𝑙(∑ 𝑇𝑘)2 

𝑘=1 𝑘=1 𝑙=1 𝑘=1 
 

Because 𝑉𝑎(�̃�𝑛) = 𝑬[(�̃�𝑛)2] − [𝑬(�̃�𝑛)]2 we have: 
 

𝑛−1 𝑙 

[(�̃�𝑛)2] = ∑ 𝑬([1𝑆  =𝑙](∑ 𝑇𝑘)2) 
𝑙=1 𝑘=1 

 

𝑛−1 𝑙 

= ∑ [1𝑆 =𝑙](𝑬 ∑ 𝑇𝑘)2) 
𝑙=1 𝑘=1 

 

𝑛−1 

= ∑ (𝑆𝑛 = 𝑙)𝑬( ∑ 𝑇𝑘1𝑇𝑘2) 
𝑙=1 1≤𝑘1,2≤𝑙 

 

𝑛−1 

= ∑ (𝑆𝑛 = 𝑙)( ∑ 𝐸[𝑇𝑘1𝑇𝑘2]) 
𝑙=1 1≤𝑘1,2≤𝑙 

 

𝑛−1 𝑙 

= ∑ (𝑆𝑛 = 𝑙)[∑ 𝐸[𝑇2 ] + ∑ 𝐸[𝑇𝑘1]𝐸[𝑇𝑘2]] 

𝑙=1 𝑘=1 1≤𝑘1≠𝑘2≤𝑙 
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𝑛 2 

 

𝑛−1 

= ∑ (𝑆𝑛 = 𝑙)[2𝑙 + ∑ 1] 

𝑙=1 1≤𝑘1≠𝑘2≤𝑙 
 

𝑛−1 

= ∑ (𝑆𝑛 = 𝑙)[2𝑙 + 𝑙2 − 𝑙] 
𝑙=1 

 

𝑛−1 

= ∑(𝑙2 + 𝑙)𝑷(𝑆𝑛 = 𝑙) 
𝑙=1 

 

𝑛−1 𝑛−1 

= ∑ 𝑙2(𝑆𝑛 = 𝑙) + ∑ 𝑙𝑷(𝑆𝑛 = 𝑙) 

 
[(�̃�𝑛)2] = 𝑬[𝑆𝑛]2 + 𝐸[𝑆𝑛]. 

𝑙=1 𝑙=1 

 

Finally  

𝑉𝑎[�̃�𝑛] = 𝑬[(�̃�𝑛)2] − 𝑬[�̃�𝑛]2 
 

= [𝑆2] + 𝑬[𝑆 ] − 𝑬[𝑆 ]2 
𝑛 𝑛 𝑛 

 

= [𝑆2] − 𝑬[𝑆 ]2 + 𝑬[𝑆 ] 
𝑛 𝑛 𝑛 

 

12 = (4 + 𝐻 
 

 
) − 4(1 + 1   ( 2 )[ + 𝐻 ]]. 

 

 

Note: 

𝑛 𝑛 𝑛 𝑛 𝑛 

 

[�̃�𝑛] ≃ 2𝐼𝑛(𝑛), 𝑉𝑎𝑟[�̃�𝑛] ≃ 4𝐼𝑛(𝑛), 
 

We deduce  
 

   �̃�𝑛  

𝐼𝑛(𝑛) 

 
 

 
𝑷 
→ 

2. 
𝑛 → +∞ 

 

4. Internal and external path lengths 

 
Let 𝑇𝑛 be a binary tree with n internal nodes . for all 𝑥 an internal node denote by 𝐿𝑥 be the 
consumed time to search 𝑥 . for the particular case . if 𝑥 = ∅: the root, by convention we 
have𝑙∅ = 0. the internal path length of 𝑇𝑛 . the quantity denoted by 𝐼̃𝑛 defined then as : 

 
�̃�𝑛 = ∑ 𝑙𝑥 

𝑥∈𝑇𝑛,𝑥𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 
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j=1 

j=1 

 

The process 𝐼̃𝑛 is used to give a measure representing the amount of time consumed to search 
all the internal nodes of 𝑇𝑛. for 𝑇𝑛 We know that, we have 

𝑛 + 1 leaves ( external nodes ). let for 𝑦 external node of 𝑇𝑛 , 𝑥𝑦 be the unsuccessful searching 

of 𝑦 . Then the sum of all unsuccessful searching of all the external nodes of 𝑇𝑛 is denoted by 

�̃�̃𝑛 defined as : 
 

 

 

Where 𝜕�̃�𝑛: is the set of leaves of 𝑇  . 

𝐽̃�̃� = ∑ 𝑥𝑦 

𝑦∈𝜕�̃�𝑛 

 

The external path length ̃Jn serves as a measure of all unsuccessful searching of all the external 
nodes of Tn. 

For our model: ̃In+1  = Ĩn  + ∑sk   Tk 
 

sk sk 

̃Jn+1 = ̃Jn − ∑ Tj + 2 ∑ Tj + T(1) + T(2) 
j=1 j=1 

 

Conclusion : ̃In+1  = Ĩn  + ∑sk   Tj 

 

sk 

̃Jn+1 = ̃Jn + ∑ Tj + T(1) + T(2). 
j=1 

 
 
 

Our aims is to obtain the relation between 
 

̃In+1 and ̃Jn+1 

Theorem 5. 
 

2n 

̃Jn = ̃In + ∑ Tj 

j=1 

 
Proof: The proof is by induction 

• for n = 1, the only tree with one internal node is the following: 

 
I1 = 0 x1 = x1 + x2 = 2 

 

2 

I1 = 0 + ∑ Tk = T1 + T2 
k=1 

 
• suppose the relation is true for all binary tree with size n. we prove is also true for all binary 

tree with size n + 1. We have 
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n+1 

 

sk 

J~ = ̃Jn + ∑ Tj + T(1) + T(2) 
j=1 

 

2n sk 

= ̃In + ∑ Tj + ∑ Tj + T(1) + T(2) 
j=1 j=1 

 

2n 

= ̃In+1 + ∑ Tj + T(1) + T(2) 

j=1 
 

2(n+1) 

̃In+1 + ∑  Tj 

j=1 
 

Theorem 6. We have  

 
[S̃  ] 

 
1 

[̃
 

 
 

 
 
 ] + 1. 

n = 
n 

𝐄 In 

 
 
 

Proof:  

 
E[S̃ 

 
/T̃  , T̃  , … , T~     ] =  

(L0  + T0) 
+ 

(L1  + T1) 
+ ⋯ + 

(Ln−1  + Tn−1) 
n 0     1 n−1 n n n 

 

n−1 
1 

n−1 
1 

= 
n 

∑ Lk + 
n 

∑ Tk. 
k=0 k=0 

 

Taking expectations of (3.2) 
 

 
  S̃ 

n−1 
1 

 
 

n−1 
1 

 
 

[  n] = 
n 

𝐄[∑ Lk] + 
n 

𝐄[∑ Tk] 
k=0 k=0 

 
= 

1 
[̃I ] 

1
 

n n 

 
1 

[̃
 

 
 

+ (n) 
n 

 ] + 1 
= 𝐄 In 

n 

E[̃J  /T̃  , T̃  , … , T~    ] = 
   J1      

+ 
   J2      

+ ⋯ + 
 Jn+1  

 
n 0     1 n−1 n + 1 n + 1 n + 1 
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n+1 
1 

= 
n + 1 

∑ Jn 

i=1 
 

   Jn  
= 

n + 1 
 

= 
(Jn)

. 
n 

+ 1 
 

Substituting the new expressions for [Jn] and 𝐄[In] 
 

 
 
 

Conclusion: 

2n 

[Jn] = 𝐄[In] + 𝐄[∑ Tj] = 𝐄[In] + 2n. 
j=1 

This paper had studied the random binary search trees but under exponential distribution. 

It was essentially interested to the time insertion of a given node, the first time to reach 

some given level, the first time that some given level becomes full: the first time 

saturation. In the future we emphasize to study the random exponential binary tree EBT 

introduced by Feng a
−

nd Mahmoud (2017). 
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