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ABSTRACT 

Terahertz (THz) transmission is a prominent technology in 6G mobile networks due to its 

enormous bandwidth and data transfer at fast speeds. in 6G wireless networks is crucial to 

managing massively increasing data rates and device connection for maximum performance 

and user experience optimum resource allocation is needed. It also allows dynamic network 

resource distribution for 6G's high device density and variable service requirements. Wide 

neural networks (WNN) can smooth network performance to address this issue. Paper proposes 

a WNN-based dynamic base station allocation method for 6G wireless networks. Training the 

WNN model with 14 6G parameters. Results show that the WNN strategy for dynamic decision-

making in 6G networks works and might be used to other domains with comparable issues. 

With fewer fully connected layers, the wide neural network model performs better. Received 

validation accuracy is Interestingly, linear models without an activation function (None) 

perform as well as Tanh for single and two-layer topologies, with accuracy of 93% and 92%, 

respectively, and AUCs of 0.99. With three layers, accuracy decreases to 86%, still good. 

Key Words: 6G wireless networks, Resource Allocation, Deep Learning, Wide Neural 

Networks, Activation Functions. 

INTRODUCTION 

With its wide and complex needs, 6G is projected to enable the unprecedented Internet of 

Everything scenarios. To successfully meet numerous objectives, 6G envisions interconnected 

three-dimensional networks with various slices, utilizing new technologies and paradigms for 

increased intelligence1 and flexibility. Complex, varied, and dynamic 6G networks make 

effective resource utilization, seamless user experience, and autonomous administration and 

orchestration problematic. As big data processing technologies, computing power, and rich data 

increase, AI may be used to address complicated 6G network challenges. Optimizing resource 

allocation is crucial for 6G-enabled IoT network performance.  

The majority of current research focuses on massive data transfer for static jobs [1]. The 6G 

network, the newest mobile communication technology, enables large-scale dynamic networks 

[2].  The paper proposes a simple method for network nodes to determine base station status. 

A Wide Neural Network uses 14 6G parameters and dynamically allocates base stations. 

Figure1. Shows the 6G network scenario, where resources can be allocated as per users request 

using deep learning approach. 
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Figure 1. 6G wireless networks scenario 

Wide neural networks categorize data [3]. This approach requires a labeled dataset for model 

training [6]. Neuron layers comprehend neural network input-output relationships. Each wide 

neural network layer in the proposed study comprises 14 neurons. For 100 users, wide neural 

networks are more effective. Iterating input data and modifying neural weights based on 

predicted and actual outputs trains the model. For accurate categorization, wide neural 

networks decrease error. Network monitoring and base station node notification occur during 

training. After training, the network applies the same input parameters to the new node to 

output. Nodes are tested for base station status. The intelligent base station allocation decision 

involves 14 inputs. For an educated conclusion, the network gets various input parameters 

during training. The 6G network adjusts to training. Based on binary judgments, WNN 

determines base station status. The judgment uses 14 input parameters and network training. 

Trial parameters determine base station allocation by the network. For 100 users on MATLAB 

classification learner, the suggested method calculates interestingly, for linear models without 

an activation function (None) perform as well as Tanh for single and two fully connected layer 

architectures, with accuracy of 93% and 92%, respectively, and area under the curve (AUC)s 

of 0.99. With three fully connected layers, accuracy decreases to 86%, which is still good 

compared to ReLU and Sigmoid. This was done by tuning model hyperparameters. The WNN's 

dynamic base station allocation and 6G parameter analysis are shown. ‘ 

LITERATURE SURVEY 

Yang, Z. et al. shows A UAV-, NOMA-, and MEC-based AI system improves mobile task 

offloading and resource allocation to enhance connection, latency, and energy utilization. It 

examines federated learning and reinforcement learning to meet these obstacles, including their 

benefits and research issues [3]. Alsharif, M.H et al. finds that the paper synthesizes previous 

research to outline 6G wireless communication's envisioned characteristics, difficulties with 

possible solutions, and current research efforts, laying the groundwork for future research [4]. 

De Alwis et al. surveys AI-enabled 6G communication technologies and discusses how AI may 

improve localization, UAVs, and security, using a use case in intelligent transport systems [5].  

Jiang, W et al. discusses the impending 6G mobile communication system, its need, use cases, 

technological requirements, current research, and a roadmap for its development, as well as 5G 

and its possible supporting technologies and problems [6]. Mathew, A. et al. introduces an AI-

driven architecture for 6G networks to improve data discovery, service provisioning, system 

adaptability, and resource management for advanced applications, as well as network 

optimization and future research directions [7].  Yu, M et al. paper proposes a THz-band 
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scheduling and power allocation technique for 6G networks to simplify resource allocation and 

improve concurrent transmissions and reduce interference. Simulations suggest this method 

improves throughput by 12.5% to 60.7% over conventional methods [8]. Zhang, X et al. 

presents FBC-based resource allocation strategies for 6G THz band nano-networks to 

maximize effective capacity, ensure strict QoS for mURLLC with statistical delay and error-

rate bounds, and address energy limitations with energy harvesting to target 1 Tbps data rates 

[9]. Nikooroo, M et al. proposes Optimizing user clustering, transmission power allocation, 

and UAV placement increases communication coverage by 67% to 270% without boosting 

propulsion power in UAV-based mobile networks [10]. Benfaid, A et al. shows innovative deep 

reinforcement learning system, AdaptSky, optimizes 3D UAV placement and NOMA power 

distribution in communication networks, exceeding standard approaches in data rate, fairness, 

and generalization [11]. Alajmi, A et al uses actor-critic deep reinforcement learning (ACDRL) 

to dynamically optimize power allocation in multi-cell NOMA networks, outperforming RL, 

DRL, and OMA approaches in long-term sum rate [12]. 

METHODOLOGY 

This article utilizes 14 6G parameters as input, with a sample size of 100 random users. For the 

creation of a real-world simulation environment, 14 parameters are selected based on an 

extensive literature review to define the base station and users. The spacing between the Tera 

Hertz base station and nodes is set at 20 meters. Each node is connected to 10 partner nodes. 

The necessary factors for constructing the feature matrix for dynamic allocation of base stations 

are channel noise, bandwidth, delay, distance from base station, central frequency, packet 

length, number of packets, number of partner nodes, and load location. A neural network data 

set is created by implementing test considerations, forming a supervised data set for training a 

wide neural network. 80% of the input data metrics are allocated for training, while the 

remaining 20% is designated for validation. The results are kept in categorical format.  

Effectiveness of dynamic base station allocation is determined through fine tuning the 

hyperparameters of a wide neural network. The number of fully connected layers utilized are 

one, two, and three, with each fully connected layer having a size of one hundred. The 

activation functions utilized include ReLU, sigmoid, tanh and none, with the exception of the 

final layer. Setting the iteration limit to 1000, the regularization strength Lambda is chosen as 

0.1. After training the model, a meticulous tuning of hyperparameters is conducted to determine 

if the node will function as a base station. 

RESULTS AND DISCUSSION 

The study evaluated the performance of a wide neural network for base station allocation using 

a dataset of 100 users. The neural network was trained with various hyperparameters, such as 

fully connected layers and activation functions. The network's performance is assessed based 

on validation accuracy and area under the curve (AUC). Table 1. displays the tuning of 

hyperparameters for Wide Neural Networks. 

Table1. Tuning of hyper parameters for Wide Neural Networks  
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1 100 0 0 1000 0.1 ReLU 88 
0.9

9 

1 100 100 0 1000 0.1 Tanh 93 
0.9

9 

1 100 0 0 1000 0.1 Sigmoid 76 0.8 

1 100 0 0 1000 0.1 None 93 
0.9

9 

2 100 100 0 1000 0.1 ReLU 76 
0.9

7 

2 100 100 0 1000 0.1 Tanh 92 
0.9

9 

2 100 100 0 1000 0.1 Sigmoid 76 
0.5

7 

2 100 100 0 1000 0.1 None 92 
0.9

9 

3 100 100 100 1000 0.1 ReLU 76 
0.4

8 

3 100 100 100 1000 0.1 Tanh 89 
0.9

9 

3 100 100 100 1000 0.1 Sigmoid 76 
0.5

1 

3 100 100 100 1000 0.1 None 86 
0.9

9 

 

Rectified linear unit (ReLU) activation function yield an accuracy rate of 88% with an AUC of 

0.99, particularly in deeper neural network architectures. The accuracy drops to 76% with 

corresponding AUC values of 0.97 and 0.48. 

When using the Tanh activation function, the accuracy achieved is 93% for a single fully 

connected layer network, 92% for two layers, and 89% for three layers. The AUC remains 

consistent at 0.99. When examining the performance of the sigmoid activation function in 

neural networks, it consistently achieved an accuracy of 76% across single, two, and three fully 

connected layers. The corresponding AUC values were 0.8, 0.57, and 0.51 for each 

configuration. The model without any additional features, essentially a linear model, performs 

comparably to the top-performing models for both single- and two-layer configurations, 

achieving an accuracy of 93% and 92% respectively. Having an AUC of 0.99 and an accuracy 

decrease to 86% with three layers, which is still relatively high. Figure 2.  
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(a)                                                                          (b) 

Figure 2. Performance measures for wide neural networks (a) Validation Accuracy Vs 

activation functions (b) Area under the curve Vs Activation Functions with single, two and 

three fully connected layers 

The results in Figure 2(a) show the validation accuracy of a wide neural network model using 

different activation functions including ReLU, tanh, Sigmoid, and none (linear) across different 

numbers of fully connected layers. Results depicted in Figure 2(b) illustrate the area under the 

curve (AUC) for different activation functions including ReLU, tanh, Sigmoid, and none 

(linear) across different fully connected layers. A higher AUC value indicates superior model 

performance. The tanh activation function consistently demonstrates higher AUC values for 

different numbers of hidden layers compared to the sigmoid and no activation functions. 

CONCLUSION 

The wide neural network model is detailed, trained to make decisions based on fourteen input 

parameters of 6G network for each node, achieving accurate classification. The Tanh activation 

function demonstrates consistent performance across different fully connected layers in neural 

networks, achieving high AUC values. Interestingly, the linear model performs well when the 

problem is linearly separable. ReLU shows good performance in a single fully connected layer 

but struggles to maintain this performance as more fully connected layers are added. The 

sigmoid function is effective in terms of accuracy and AUC. Based on the specific setup, the 

tanh activation function demonstrates strong performance. The algorithm presented provides a 
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practical solution for optimizing resource allocation and highlights the significant impact of 

deep learning algorithms on the advancement of 6G networks. 
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