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Abstract 

In the current era marked by disruption and uncertainty, the reliance on top executives' 

intuition, experience, and education necessitates augmentation with pertinent data to 

enhance firm competitiveness. Acknowledging the pivotal role of data in business, 

companies of varying sizes recognize the significance of data-driven and purpose-driven 

business analytics for gaining a competitive edge. Despite this awareness, organizations 

often underutilize data to foster a competitive advantage. This study delves into the 

strategic approach of maximizing data utilization, referred to as business analytics 

adoption (BAA), as a transformative catalyst for business growth and the establishment of 

competitive advantages. The primary objective of this research is to investigate the 

impact of the Technological, Organizational, and Environmental (TOE) framework, 

mediated by business analytics adoption (BAA) and dynamic capability, on achieving 

competitive advantage (CA) performance, specifically within the context of an E-

commerce company. The study involved 327 E-commerce firms. The collected data 

underwent processing and analysis through Structural Equation Modeling (SEM). The 

findings of this study reveal that the technological, organizational, and environmental 

factors positively and significantly influence business analytics adoption and dynamic 

capability. Business analytics adoption serves as a mediator between technological 

factors and dynamic capability, as well as organizational factors and dynamic capability. 

Additionally, dynamic capability mediates the relationship between business analytics 

adoption and competitive advantage. Both business analytics adoption and dynamic 

capability exhibit positive and significant effects on competitive advantage.  
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1. INTRODUCTION 

The fourth industrial revolution brought about radical changes in the human way of life. 

The advent of artificial intelligence has enhanced innovations and introduced extremely 

new realities to the future of mankind (Davenport, Guha, Grewal & Bressgott, 2020). To 

this end, the World Economic Forum (2020) spawned the Centre for the New Economy 

and Society initiative for public and private organizations to advance studies in data 

science, shape new models and standards, and drive scalable action for systemic change 

to deepen our understanding of our new future. Per this initiative's findings, firms 

worldwide should start changing the way they look at the world today to foster 

competitive advantage tomorrow (Reeves & Deimler, 2011). As the world moves on from 
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archaic resources like gold or oil and many more abstract and intangible assets like data 

and information, successful exploration and management of these resources is growing 

ever more vital. Primarily, organizations have fully understood that purpose-driven and 

data-driven are crucial. Nevertheless, companies do not prepare enough for this challenge 

and enter industry 4.0 by nature. The ability to transfer knowledge of extensive use of 

data and information from individuals (tacit) to individuals (tacit) or from individuals to 

organizations (tacit to explicit) is, for instance, still lacking. This is because the ability 

and skills to maximize and optimize the extensive use of data and information do not 

reside within the organizations (Rehman, Chang, Batool, Wah, 2016; Sivarajah, Kamal, 

Irani, Weerakkody, 2017). These skills and abilities are still inherent to individuals and 

have not yet been transmitted and disseminated properly throughout the organizations 

(Sivarajah et al., 2017). 

Behl (2020) later empirically found that big data analytics capability positively affected 

firm performance and competitive advantage. Since the data were collected from the 

startups in which the big data was utilized for their business purposes, we can say that 

this big data analytics capability is essentially business analytics capability. In other 

words, business analytics capability should also affect the firm's competitive advantage. 

Nonetheless, the existing literature has not yet empirically examined this effect, and 

consequently, examining this effect is the objective of this study. Behl (2020) further 

argued that business analytics capability and big data analytics capability are rooted in 

dynamic capability, which captures the overall firm's capability to cope with its dynamic 

environment. In addition, Holsapple et al. (2014) contended that business analytics 

capability is a result of the decisional paradigm of adopting business analytics. The 

question then becomes, if the decision to adopt business analytics yields business 

analytics capability, will the same decision result in dynamic capability? Relating this 

question to the said objective of this study, will business analytics directly and or 

indirectly (via dynamic capabilities) affect competitive advantage? These two questions 

have also not been addressed in the existing literature, and thus addressing such questions 

is the subsequent objective of this study. 

Meanwhile, Teece, Pisano, and Shuen (1997: 516) defined dynamic capabilities as "the 

firm's ability to integrate, build, and reconfigure internal and external competencies to 

address rapidly changing environments." In other words, dynamic capabilities are built as 

a response to the fluctuated context the firm is in. Tornatsky and Fleischer (1990) 

introduced technology-organization-environment (TOE) as a framework and theoretical 

lens to examine contextual factors. Technology, for instance, is a resource enabler that 

supports the firm in configuring resources and capitalizing opportunities to adapt to the 

fast-changing environment. Technology benefits and influences the firm's business 

analytics through the development of innovation that immerses into products and 

services. Technology determines how fast the firm can adapt to uncertain conditions, as 

well as encourages the firm to explore and sense new opportunities across the market and 

could lead the firm to marketplace acceptance as the first-mover (Wilden, Gudergan, 

Nielsen & Lings, 2013). Technology helps simplify enormous amounts of data and 

information, which in turn influences the dynamism and the intensity of global 

competition of the firm. It is the technology that eventually determines how business 

analytics is going to be adopted. 

In TOE framework, organizational factors such as strong leadership from the top 

management team, reward system (Lawson & Samson, 2001), capabilities in managed 

cross-functional teams, and organizational structure and process. Organizational factors 

are an internal context that determines how things are done in the firm, including how 

business analytics adoption is going to be implemented. Top management support is 

required for organizational restructuring and process reengineering, which subsequently 

affects the firm's business analytics adoption. Top management support is also essential in 

deciding whether the organization is going to adopt business analytics. The same is true 
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for organizational structure and process, which represents the coordination mechanism 

within the firm. Organizational structure and process affect how quickly and flexibly the 

firm utilizes its competencies to respond to fluctuated contexts, as well as to streamline 

huge amounts of data and information. In short, organizational structure determines the 

firm's adoption of business analytics.  

The environment is the classical external contextual factor in TOE framework that 

indicates the extent to which the industry or market, the society, and the government are 

dynamics. A turbulent market, for example, forces the firm to quickly integrate, build and 

reconfigure its competencies to respond to such turbulency. In addition, a turbulent 

market presents the firm with continuous and vast amounts of data and information that 

need to be well organized to provide value for the firm. The same is true for the rapid 

shift of society because of the growth of the Internet of things that requires the firm to 

develop its business analytics adoption to establish dynamic capability. In sum, referring 

to Maroufkhani, Tseng, Iranmanesh, Ismail, and Khalid (2020), technology, organization, 

and environment are enablers and determinants of business analytics adoption. 

Furthermore, technology, organization, and environment direct the firm on how business 

analytics is going to be adopted. Nevertheless, there has been a lack of research that 

directly relates TOE factors to business analytics adoption. Consequently, examining such 

direct relations is the objective of this study. 

Indonesia, as a research context, has the fastest growing E-commerce in the world, with 

more than 100 million internet users (Merchant Machine, 2019). This situation has led to 

a rapid increase in the amount of structure and unstructured data in Indonesia. With the 

abundance of data and information flows, Indonesia is preparing policies and actions 

through "One Data Indonesia." Such government initiative opens the door for the 

prevalence and environmental significance of business analytics adoption. The adoption 

of business analytics integrates business understanding and data understanding to 

leverage the data for decisions and actions. The transfer of new knowledge from data 

grows exponentially along with their insight opportunities. Adequate capabilities and 

technology are essential to pursuing these new opportunities. Data can be one of 

Indonesia's current treasures: today, data is more valuable than oil. The inevitable growth 

of data and information makes its use even more vital. Skills and abilities are needed to 

optimize and increase value to improve the welfare of individuals, companies, and 

nations.  

 

2. LITERATURE REVIEW 

2.1. Technological, Organizational, and Environmental  

Technological, organizational, and environmental (TOE) are contextual factors that are 

put together as a framework by Tomatzky and Fleischer (1990) to study the adoption of 

technological innovation. Technological factor concerns not only information technology 

(IT) assets but also technology complexity and compatibility. Complexity is associated 

with difficulty in understanding and using the technology, while compatibility is related 

to the consistency of technology with the existing values, past experiences, and needs of 

potential adopters (Rogers, 2003). Organizational factor involves top management 

support for information and communication technology (ICT) program and its integration 

with the business process (Young & Jordan, 2008), as well as encompass data resource 

management (K. Ramamurthy, Sen, & Sinha, 2008) and expenses and efforts (such as 

organizational restructuring and process re-engineering) incurred for implementing 

technology (Chau & Hui, 2001). Environmental factor mainly focuses on perceived 

industry pressure and perceived government pressure (Kuan & Chau, 2001). 

In a further development, Zhu and Kraemer (2005) considered TOE as an important 

antecedent to understanding the diffusion of e-business, while Weng and Lin (2011) 
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employed TOE framework to analyze the determinants of the adoption of green 

innovation technology by small and medium-sized enterprises (SMEs). Moreover, 

Rahayu and Day (2015) developed a model based on TOE framework to investigate 

factors that influence SMEs in developing countries to adopt e-commerce. Then 

Puklavec, Oliveira & Popovic (2018) suggested TOE as determinants for business 

intelligence system adoption stages. In more recent studies, Kumar and Krishnamoorthy 

(2020) elaborated TOE framework for investigating business analytics adoption of the 

firm, while Abed (2020) used TOE as the theoretical framework to examine the factors 

that affect the intention of SMEs to utilize social commerce as a business tool. 

Technological, organizational, and environmental are the TOE framework factors 

developed by Tomatzky and Fleischer (1990). There are three dimensions of 

technological factors: Complexity, IT Assets, and Compatibility. Organizational factors 

influence the business analytics adoption to impact the previous and existing 

organizational learning the future actions in technology management (Erevelles et al., 

2016; Nayak et al., 2019).  

There are three main dimensions of organizational factors in the TOE framework: top 

management support, organizational data environment, and perceived cost. Top 

Management Support devotes their time to the information system (IS) program in 

proportion to its cost and potential, reviewing plans, following up on results, and 

facilitating the management problems involved with integrating new technology with the 

business management process (Young and Jordan, 2008). An organizational data 

environment is how an organization can manage the data resources within the entire 

organization (Ramamurthy et al.,2008). The expenses of implementing necessary 

technologies in organizations, efforts devoted to organizational restructuring, and process 

re-engineering related to the perceived cost dimension. (Chau and Hui, 2001). In TOE 

framework, external pressure and industry type are the two dimensions of environmental 

factors. External pressure is the influence of the external business environment (Kuan and 

Chau, 2001) that affects business analytics. Using environmental factors to improve 

business analytics inside and outside an organization will increase process performance 

and the firm’s competitive advantage. 

2.2 The Relationship Between Business Analytics and Dynamic Capability 

Business analytics helps to shed light on how to employ dynamic capabilities perspective 

to detect, anticipate and respond to an uncertain environment. Teece (2007) characterized 

dynamic capabilities as the capacity to sense opportunities and threats, seize opportunities 

and maintain competitiveness through transforming assets. To understand environmental 

changes, Teece suggested that dynamic capabilities require ‘some kind of analytical 

framework’ (Teece, 2012; Teece, 2007). The dynamic capability model of sensing, seizing 

and transforming (Kump e al, 2019; Teece, 2007) as a robust dimension can be affected 

by business analytics. Business analytics influence sensing the internal and external 

opportunity, i.e., detecting the opportunities for efficiency improvement or effectiveness 

in the company, sense the requirement new way of business works, sensitive to internal 

threats and opportunities and inefficiencies, identification on current business processes 

opportunities to improve effectiveness or efficiency in the company (Rijmenam et al., 

2019). Besides, sensing the opportunities and threats in the environment can be enhanced 

through the adoption of business analytics, opportunities identification to the change of 

organizations are driven by awareness of our environment, market condition, prepare 

actionable options based on surrounding of the business. Capability on business analytics 

will enhance seizing capability to develop agreement among relevant stakeholders, build 

consensus among relevant stakeholders, formulate, and develop a viable and effective 

action plan, create a capitalize strategy on the situation, and make a decision effectively 

about which course of action to pursue, quickly decide on the best course of action, 

decide on the appropriate course of action (Rijmenam et al., 2019). In transforming and 

change capability, business analytics capability helps on activity, business processes 
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change with adapt rapidly into business processes to competitive changes (Torres et al., 

2018). 

Business analytic capability is a critical issue in electronic commerce. Every company 

should catch up with and has a ready-to-cope attitude. Most e-commerce companies face 

this industry by nature without appropriate and well plan skills and capabilities. These 

companies realize the critical asset of big data. Nevertheless, they have no capabilities to 

know how to optimize and have no competence in business analytic capabilities. Business 

analytics adoption enhances dynamic capability to sense immediate problems and sales 

opportunities. People analytics will become an enabler to sales representatives on location 

(Rijmenam et al., 2019). Vidgen et al. (2017) advise that capability of business analytics 

of an organization is perceived as an enhancer between the access (internal and external) 

data the organization generates and the value the organization may leverage through a 

better decision from that data (Vidgen et al., 2017). Business analytic capabilities have 

broader implications for improving the firm’s dynamic capability through value creation. 

Vidgen et al. (2017) explain how business analytics capabilities will enable a company to 

manage its resources by building organizational data and skills and overcoming analytical 

and technical skills shortages. The important challenges for managers in developing 

business analytics are how to use and align the current IT platforms and fit with big 

volumes of data to sense, anticipate, and have a quick response strategically. This 

challenge will enhance the firm ability to produce credible analytics, manage data 

processes, manipulate data, and in the end, will improve dynamic capability. 

2.3 The Relationship Between Business Analytics Adoption and Competitive Advantage 

The foundation for the growing research related to industry 4.0 is mainly on adding value 

to the customers (demand-pull) and the processes (technology-push) (Frank, Mendes, 

Ayala, & Ghezzi, 2019). To add value, organizations need data and information on what 

value could be added that is translated into higher quality products and services with 

lower production costs, which in the end is translated into a competitive advantage 

(Mikalef, Pappas, Krogstie & Giannakos, 2019). However, these data and information 

must be further examined and analyzed before they are utilized to create additional value. 

The process of acquiring, examining, analyzing, storing, and using the data and 

information is known as business analytics (Holsapple et al., 2014). Organizations that 

adopt business analytics “is concerned with the extensive use of data, statistical, and 

qualitative analysis, explanatory and predictive models and fact-based management to 

derive decision and actions” (Davenport & Harris, 2007, p.7).  

According to Aydiner, Tatoglu, Bayraktar, Zaim, & Delen (2019), there are four 

dimensions of business analytics adoption: data acquisition and processing, prescriptive 

analytics, predictive analytics, and descriptive analytics. Lepenioti, Bousdekis, 

Apostolou, & Mentzas (2020) argued that prescriptive analytics was about finding the 

best course of action in analyzing data and information and is often considered the next 

step toward increasing data analytics maturity, leading to optimized decision-making 

ahead of time for business performance improvement. Drawing from classical statistics, 

predictive analytics is used to predict the future by analyzing the current and historical 

data and information and making it into a model (Kumar & Garg, 2018). Meanwhile, 

prescriptive analytics answers such questions as, “What should I do?” and “Why should I 

do it?” (Lepenioti et al., 2020). Business analytics is frequently referred to big data 

analytics as data and information collected and processed are in a large amount (Duan & 

Xiong, 2015; Pappas et al., 2018; Vassakis et al., 2017). Business analytics adoption 

creates a competitive advantage through innovation differentiation and market 

differentiation (Zhou, Brown, & Dev, 2009). Competitive Advantage is defined as the 

capacity of a firm to enhance the value of its products, decrease the cost of its products, 

and expand its business presence or benefit. (Grupe & Rose, 2010; Mcgahan & Porter, 

2019; Porter, 1990). In searching for a competitive advantage, firms face competitive 

dynamics, which present new opportunities and possibilities for innovation. In other 
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words, as Ireland and Webb (2007) denoted, firms can create a competitive advantage 

through the exploitation of such opportunities and streams of innovation.  

In the era of big data, the exploitation and exploration opportunities through innovation 

require firms to support and develop data-oriented management systems to make sense of 

the increasing volumes of data and address the need to create an understanding of the 

business value and build competitive Advantage (Kiron and Shockley, 2011). Business 

needs data and analytics to provide benefits for organizations by enabling improvements 

to business processes and firm performance and creating competitive Advantage 

(Davenport and Harris, 2007). As an example, the process of understanding and meeting 

customer needs related to the firm’s marketing and sales activities is highly dependent on 

business insights gathered from the availability of data and information. These activities 

will ultimately create a competitive advantage by generating excellent quality, economies 

of scale, and economies of scope. The economies of scale are the first way organizations 

drive to achieve competitive Advantage through cost efficiencies against their peers. 

HYPOTHESES DEVELOPMENT 

In this section, the research hypothesis is developed based on the previous study in the 

literature on the business analytics context. The research model is presented in figure 1. 

In this model, the TOE framework will enhance the firm competitive advantage through 

business analytics adoption and other path mediated by dynamic capability. TOE is the 

determinant factor of business analytics adoption, and competitive advantage is a 

consequence of output. Therefore, in this context, the researcher formalizes the 

circumstances into a hypothesis as follows: 

H1: Technological factor positively and significantly affects the business analytics 

adoption 

Technology is one of the key factors of business analytics to create new products using 

high-volume, high-speed, and real-time customer activity data (Conboy et al., 2020). The 

availability and character of technology in an organization affect the way that a company 

adopts business analytics. The complexity of technology is related to how easily the 

innovation will be implemented once adopted. When the learning process to use business 

analytics is difficult for employees, companies tend to delay the adoption. The procedure 

for learning and implementing the technology should be simple and easy to understand. 

Besides, Roger (1983) argues that some of the characteristics of technology that influence 

adoption are related to relative advantage. Relative advantage characteristic means 

whether the improvement of the new technology will be better than the previous 

generation of technology. Technological factors dimension consist of complexity, IT 

assets, and compatibility. These three main dimension affects the decision of an 

organization to adopt business analytics. The technology complexity and assets comprise 

the human resources competency and Information Technology infrastructure to rapidly 

adopt the adoption of business analytics. The previous research has also supported the 

result that IT assets as a significant factor in technology adoption (Gangwar 2018). The 

compatibility of business analytics with business needs is a critical determinant for 

business analytics adoption (BAA). The BAA implementation starts with gathering the 

business requirements from technological factors and improving the business analytics to 

meet the business needs. Many studies have validated compatibility as a significant 

determinant of Business Analytics adoption (Alshamaila et al., 2013; Chen et al., 2015; 

Wang et al., 2010; Verma and Bhattacharyya, 2017). Based on these explanations, the first 

hypothesis of this study is technological factor positively and significantly affects the 

business analytics adoption. 

H2: Organizational factor positively and significantly affects the business analytics 

adoption 
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Organizational factors, such as top management support, organizational data 

environment, and perceived cost, have a positive influence and impact on business 

analytics adoption. The support from the top management team is a crucial determinant of 

business analytics adoption (Dubey et al., 2016; Wang et al., 2010; Gangwar, 2018). The 

manager has to ensure to get appropriate support from the top management team in 

implementing business analytics adoption. The lack of support from top management is a 

cause for the non-adoption of business analytics (Wang et al., 2010). Data sourcing, data 

mining, data accessibility, data quality, and data-driven culture in organizations are 

critical functions in developing a data management environment. Every function of an 

organization has to maximize the use and relevance of data. The organization needs to 

understand collaboration within the division and not keep data in silos. The challenge of 

these data quality and functions is supported by previous studies on business analytics 

adoption (Xavier et al., 2011; Mathew, 2012). According to Verma and Bhattacharyya 

(2017) related to perceived cost as an organizational factors dimension acts as a crucial 

factor in adopting business analytics. Perceived cost studies on business analytics, 

technology, and cloud computing adoption support perceived cost as a significant factor 

influencing business analytics adoption (Esteves and Curto 2013; Gangwar 2018). Based 

on these explanations, the second hypothesis of this study is organizational factor 

positively and significantly affects business analytics adoption. 

H3: Environmental factor positively and significantly affects the business analytics 

adoption 

Environment factors such as competitive pressure and industry type are the determinant 

for technology adoption, confirming most of the studies on analytics adoption (Chwelos 

et al. 2001; Gangwar 2018; Ramanathan et al. 2017). Organizations continuously monitor 

the technology innovations adopted by their competitors. Organizations are more likely to 

adopt business analytics if competing organizations are using business analytics. 

Furthermore, the way firms interact with direct and indirect competitors is impacting 

business analytics adoption. The company sees some analytical learning and 

communication by a competitor and starts implementing the same analytical internally. 

Some studies have found industry type as a significant predictor of business analytics 

adoption (Chwelos et al. 2001; Dutta and Bose 2015; Oliveira and Martins 2011). The 

adopter organizations operate with a need for a high volume of information processing to 

achieve their business objectives in the industries. Besides, companies tend to follow their 

competitor in implementing the adoption of business analytics to serve their customers by 

identifying and satisfying their customer's needs using business analytics adoption (Wang 

and Cheung 2004). The customer orientation pressure has been found to drive the 

adoption of business analytics in some adopter organizations. Based on these 

explanations, the third hypothesis of this study is environmental factor positively and 

significantly affects business analytics adoption. 

H4: Business analytic adoption positively and significantly affects the dynamic capability 

The dynamic capability model of sensing, seizing, and transforming (Teece, 2007) as a 

robust dimension can be affected by business analytics adoption. Besides, business 

analytics can give better sensing to the internal and external opportunities, i.e., detect the 

opportunities to improve efficiency or effectiveness in the company. Sensing the need to 

enhance the way business works, be more aware of internal opportunities and threats, and 

identify inefficiencies in existing business processes opportunities to improve efficiency 

or effectiveness in the company. Business analytics adoption senses the opportunities and 

threats in the environment better, identify opportunities for organizational change based 

on market conditions, be more aware of the environment, and foresees a wide range of 

actionable options based on its surroundings. Furthermore, business analytics adoption is 

a dynamic capability enabler to sense immediate problems and sales opportunities. 

Business analytics adoption will enhance seizing capability to develop an agreement, 

build consensus among relevant stakeholders, and formulate and develop a viable and 
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effective action plan. Business analytics adoption creates a strategy to capitalize on the 

situation, make effective decisions about which course of action to pursue, quickly decide 

on the best course of action, and decide on the appropriate course of action. All of these 

benefits of business analytics adoption can transform and change capability, change their 

business processes in a timely manner, rapidly adapt their business processes to 

competitive changes, and quickly reallocate resources among business processes (Torres 

et al., 2018). Business analytics has broader implications in improving the firm's dynamic 

capability in enhancing value creation and competitive advantage. Aydiner et al. (2019) 

and Vidgen et al. (2017) try to explain how business analytics will enable a company to 

manage its resources by building data and skills in organizations, overcoming analytical 

skills shortages and technical skills shortages. The business analytics adoption will 

improve the process by enhancing the firm ability to produce credible analytics, manage 

data processes, maximize the use of data, and in the end, will improve dynamic 

capability. Based on the explanations above, the fourth hypothesis of this study is 

business analytic adoption positively and significantly affects the dynamic capability.  

H5: Business analytic adoption positively and significantly affects competitive advantage 

The business analytics adoption will improve competitive advantage. Vidgen et al. (2017) 

explain the conceptual framework for formulating a business analytics adoption for the 

firm to update and make a significant organizational change associated with the use of 

technologies that will reflect a firm's approach and capability to explore and exploit new 

digital technologies to improve value creation with the four basic factors. There are four 

dimensions of every business analytical skill strived to have: (1) Data Acquisition and 

Processing, (2) Descriptive analysis, (3) Predictive analysis, (4) Prescriptive analysis 

dimension relates to the action in response to improving business operation as well as its 

ability to create competitive advantage (Aydiner et al., 2019; Vidgen et al., 2017). 

Business Analytics adoption should exist within an organization, and the existence of 

these capabilities will result in the generation of organizational competitiveness. (Stevens 

& Johnson, 2016). The business analytics adoption of an organization can be thought of 

as a driver of the big data existence that the organization generates and accesses to 

internal and external factors. Furthermore, the impact of business analytics adoption 

directly to the operation, such as the supply chain, will create uniqueness and competitive 

advantage (Chae and Olson, 2013; Wu and Huang, 2018). The adoption of business 

analytics can leverage the value from data through actions based on better decisions 

(Vidgen et al., 2017). Business analytics adoption is not just about embracing new 

technology; and it can drive a change in thought and organizational behavior (Nambisan 

et al., 2019; Vidgen et al., 2017; Vidgen & Wang, 2006). Business analytics adoption can 

drive leaders, and IT teams in any enterprise to work hand in hand to meet the business 

requirements, have competence and capability for the new era, drive innovation, and 

march towards continuous improvement (Nambisan et al., 2019). This is what business 

analytics adoption is all about, accelerating business activities, lowering costs, improving 

time to market, bringing about a positive change in processes, people, and competency of 

the continuous improvement and the new process creation as well. With this activity and 

process, the business analytics adoption will induce an operational and strategic 

objective, in the end, will impact competitive advantage. Based on the explanations 

above, the fifth hypothesis of this study is business analytic adoption positively and 

significantly affects competitive advantage.  

H6: Dynamic capability positively and significantly affects competitive advantage 

The dynamic capability will affect competitive advantage through sensing, seizing, and 

transforming resources to create a better product and market differentiation (Akter et al., 

2020; Barney, 2014). Dynamic capability in industry 4.0 is very important to catch up 

with the current trend of automation and data exchange. Improve and enhance 

competitive advantage can be prepared by assessing the dynamic capability to grab the 

opportunity, starting from preparation in structuring, bundling, and leveraging for the 



Dian Alanudin et al. 1338 

 

 
Migration Letters 

 

change (Helfat and Winter, 2011; Helfat & Peteraf, 2009). This change helps a company 

to improve its competitive advantage through structuring, bundling, and leveraging 

resources for process efficiency. (Sirmon et al., 2007; 2011). Dynamic capability helps an 

organization cope with change in the short-term and long-term vision. Management 

support is a motivational force for dynamic capability in affecting competitive advantage. 

Management support includes the institutional and adequacy of resources that should be 

available and adequate to improve competitive advantage. Moreover, acquiring relational 

or environmental resources is also needed and supports the company in improving its 

competitive advantage performance. Simon et al. (2007) study determines dynamic 

capability as a comprehensive process of structuring a firm resource portfolio, bundling 

resources to build capabilities, and leveraging those capabilities with the purpose of 

creating and maintaining value for customers and owners. Through resource 

management, the process view of RBT explains how VRIO resources are built, modified, 

and reconfigured by a dynamic capability to create a competitive advantage (Simon et al., 

2007). Besides, through dynamic capability, organizational learning and environmental 

contingency can be accommodated to improve and impact competitive advantage (Akter 

et al., 2020; Oliver Schilke, 2014). Based on the explanations above, the fifth hypothesis 

of this study is dynamic capability positively and significantly affects competitive 

advantage.  

 

3. METHODOLOGY 

Sample and Data Collection Procedure 

We collected the data from employees of an E-commerce company located in Indonesia. 

In order to examine the model, these E-commerce companies have been running for more 

than one year. This study eliminates an E-commerce start-up company with less than a 

one-year operating duration. The sample used 327 companies of E-commerce companies 

with highly competitive market conditions. Researchers use quantitative research designs 

related to the design of a research project involving 327 sample sizes and concentrate on 

the quality and quantity of responses to obtain answers to research questions. The 

researcher used the expert evaluation method for wording test with leading E-commerce 

managers and top management team as industry practitioners and a two-person matching 

profile to the respondent. These activities examine whether each questionnaire is well 

understood and relevant to the research context. Then, the researchers spread the 

questionnaires to ten or more pre-test respondents from industry practitioners. These 

studies use probability sampling. Sampling Criteria describe as follow: (1) The company 

has been established for more than one year, (2) Eliminating start-up companies that have 

been operated for less than one year, (3) E-commerce company include website 

application, mobile application, and social media commerce (4) A highly competitive and 

turbulence environment. In the respondent selection, the researcher chose the respondent's 

background as close as possible to the main study.  

The questionnaire was developed based on the previous study on the literature and 

administrated a questionnaire-based quantitative study that has been adjusted to the 

research context. The researcher was also combining questionnaires to make them 

relevant to the research context about business analytics adoption, collaboration, and 

dynamic capability as the business process. Wakita et al. (2012) argue the Six Likert 

Scale avoided the neutral answer. The researcher used the Six Likert Scale in 

questionnaire development for this study. The pre-test was conducted to align the 

questionnaire to the real situation and problem in practice. The objective of the pre-test is 

to examine the reliability as well as the construct of the scales used for the latent variable 

indicators. The expert evaluation method was implemented for the wording test with two 

industry practitioners and two business analytics scholars as the representative of the 

respondents to examine whether each questionnaire is well understood and relevant to the 
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research context. Then, the researchers spread the questionnaires to the ten pre-test 

respondents from industry practitioners. The researcher chose the respondent's 

background as close as possible to the main study in the respondent selection process. 

They are executives who conduct business analytics on a daily basis through their work, 

and the company was founded more than five years. Then, the researcher conducted an 

exploratory factor analysis by using principal component analysis (PCA) with Varimax 

rotation to examine whether each indicator corresponds and groups to certain categories 

and correctly load to certain constructs. This explanatory factor analysis was conducted 

after the pre-test data was completed. According to (Hair et al., 2011), the loading factors 

of certain indicators should be above 0. 6 for their respective constructs and lower for 

others. Furthermore, the researcher used Bartlett's test to examine the sample adequacy by 

using Kaiser-Meyer-Olkin's (KMO) measure and the usefulness of factor analysis. After 

that, the reliability of the constructs was estimated by using Cronbach's alpha statistics, 

with the result should be higher than 0.7 (Hair et al., 2011).  

We invited the E-commerce company's middle to top-level management as respondents 

because they were positioned in the middle and top managerial and at the operational 

levels where they know and or experience first-hand business analytics adoption 

processes, collaboration, dynamic capability process to create competitive advantage 

through value creation. The company's human resources division provided us with a list 

of potential respondents. We limited the survey to the company that was considered to 

have strong competition. All surveys were distributed via electronic form. Respondent 

returned their completed surveys electronically and directly to us. In total, we received 

completed surveys from 131 companies. After cases with missing data had been deleted, 

our final sample contained 327 companies. Company average age was more than 12 

years, and 50.65 percent of them were more than ten years. Concerning education, 49 

percent had post-graduate degrees, 42,4 percent had bachelor's degrees, and 8.06 percent 

had diploma degrees or high school degrees. Respondents were dominated by males, 65.6 

percent, and females, 34.4 percent. In respondent positions, 47.7 percent are top 

management level, 42.4 percent are in middle management, and 9.9 percent are in other 

positions. The company established more than 12 years (51 percent), 7-9 years (15.2 

percent),  1-3 years (13.2 percent), 10-12 years (11.9 percent), 4-6 years (8.6 percent). 

Concerning the size of the company, 52.3 percent is a big company with more than 250 

employees, 22.5 percent are medium enterprises with 50-249 employees, 13.9 small 

enterprises with 10-49 employees, and 11.3 percent micro-enterprises with less than ten 

employees. From the respective respondent, the type of E-commerce was business to 

customer (B2C) type 63.6 percent, business to business (B2B) type was 25.2 percent, and 

11.2 percent was other types such as B2B2C, B2B, and B2C. 

Measures 

TOE (Technological, Organizational, and Environmental) factors 

We measured TOE (Technological, Organizational, and Environmental) factors using 

well-established theory from Louis G. Tornatzky and Mitchell Fleischer, published in 

1990. The questionnaire was adopted by Kuan and Chau (2001). For this study, the 

researcher used the scale items intended to measure Technological factors with 

complexity (TF1), IT Assets (TF2), and Compatibility (TF3). For the organizational 

factor, Top Management Team (OF1), Organizational Data environment (OF2), and 

Perceived Cost (OF3). The questionnaire for environmental factors is External Pressure 

(EF1) and Industry Type (EF2). The researcher created scale scores by averaging the 

appropriate items for each dimension after evaluating the validity of the scale items, as 

we elaborate on the validity evaluation. 

Business Analytic Adoption 

We measured business analytics adoption using a questionnaire adapted from Aydiner et 

al. (2019). Business analytics adoption is concerned with "the extensive use of data, 
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statistical and quantitative analysis, explanatory and predictive models and fact-based 

management to drive decision and actions." (Davenport and Harris, 2007, p.7). For the 

purposes of this study, the researcher used the scale items intended to measure 

innovativeness (DACQ), five items, Prescriptive (PRES) 5 items, Predictive (PRED) 5 

items, and Descriptive (DESC). Respondent indicated their responses on a scale ranging 

from "strongly disagree," to  "strongly agree." The researcher created scale scores by 

averaging the appropriate items for each dimension after evaluating the validity of the 

scale items, as we elaborate on the validity evaluation. 

Dynamic Capability.  

We measured dynamic capability using a questionnaire adapted from Kump et al. (2019). 

This perspective aligns and supports the context and purpose of this study, e.g., the 

business objectives from business analytics adoption. The business objectives of this 

context are not only for new products and services but also for strategic decisions and 

actions. Kump et al. (2019) argue the need to compare the empirical findings impairs 

data-based theory development from the original 14-item scale based on Teece's (2007); 

well-established dynamic capability framework, assessing sensing, seizing, and 

transforming capacities. For the purposes of this study, we used the scale items intended 

to measure sensing (SEN) 6 items, seizing (SEI) 5 items, and transforming (TRA) 6 

items. Respondent indicated their responses on a scale ranging from  "strongly disagree," 

to  "strongly agree." The researcher created scale scores by averaging the appropriate 

items for each dimension after evaluating the validity of the scale items, as we elaborate 

on the validity evaluation.  

Competitive Advantage.  

We measured competitive advantage performance using innovation differentiation (IDI) 7 

items and market differentiation six items. For the purposes of this study, we used the 

scale items intended to measure branch performance (BP) with 1 item. The researcher 

created scale scores by averaging the appropriate items for each dimension after 

evaluating the validity of the scale items, as we elaborate on the validity evaluation. 

Model Estimation 

This study adopted two-step structural equation modeling (SEM) to estimate the model 

(Anderson and Gerbing, 1988). The first step was to examine the validity and reliability 

of the measurement model. The examination started with evaluating the standardized 

factor loading (SFL) of each indicator (item). If SFL is less than 0.50, the indicator is not 

valid and hence must be dropped. As mentioned above, all items are included, and there is 

no items have dropped due to SFL less than 0.5. Similarly, the variable must be dropped 

if SFL is less than 0.5. There is no variable with SFL less than 0.5, so all variables are 

considered valid. Next, we examined the reliability of variables by testing the variance 

extracted (AVE) and construct reliability (CR). The dimension or variable is reliable if 

AVE is equal to or greater than 0.50 and CR is equal to or greater than 0.60.  

The minimum sample size for SEM is five times the number of indicators modeled 

(Bentler and Chou, 1987). In our sample of 327 firms with 72 indicators, our sample was 

below the minimum requirement. Therefore, we simplified the dimensions of variables by 

parceling (Rhemtulla 2016) and using latent variable scoring (Joreskog, Sorbom, and 

Yang-Wallentin, 2006), in which the second-order confirmatory analysis model was 

transformed into a first-order confirmatory analysis model. Parceling decreased the 

number of indicators to 17 and made our sample size sufficient. It resulted in a more 

stable estimation of parameters for a small sample (Bandalos 2002) and improved the 

model's fit.  

The second step of SEM was to analyze the goodness-of-fit indices (GOFIs)— Root 

Mean Square Error of Approximation (RMSEA), Non-Normed Fit Index (NNFI), 

Confirmatory Fit Index (CFI), Incremental Fit Index (IFI), Standardized Root Mean 
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Squared Residual (SRMR) and Goodness of Fit Index (GFI— and a significance test for 

path coefficients. Table 1 shows the evaluation of overall fit. Root Mean Square Error of 

Approximation (RMSEA) = 0.000, Normed Fit Index (NFI) = 0.940, Root Mean Square 

Residual (RMR) = 0.016, and Goodness of Fit Index (GFI) = 0.920. The structural 

model's overall fit is good. The assessment of measurement model of higher-order and 

lower-order constructs is shown in Table 2. 

Table 1. Measurement Model Analysis 

Measurement Value Ideal (Fit) Remark 

CMIN 89.799 small Fit 

CMIN/DF 0.863 <5 Fit 

GFI 0.920 >0.90 Fit 

RMSEA 0.000 < 0.05 Fit 

RMR 0.016 < 0.05 Fit 

PNFI 0.719   0.6 < x < 0.9 Fit 

NFI 0.940 >0.90 Fit 

RFI 0.922 >0.90 Fit 

Table 2. Assessment of Measurement Model  

 

 

4. RESULTS AND DISCUSSION 

Table 3 and Figure 1 show the results of hypothesis testing. All the seven hypotheses 

were empirically supported. Support for H1 shows that TF positively and significantly 

affects BAA. This finding is consistent with the nature of TF that triggers significant 

changes as it substantially modifies the way business analytics is adopted (Alshamaila et 

al., 2013; Chen et al., 2015; Wang et al., 2010; Gangwar, 2018). For Verma and 

Bhattacharyya (2017), the BAA implementation starts with gathering the business 
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requirements from technological factors and improving the business analytics to meet the 

business needs. The organization must make such technological change and improvement 

as a response to cope with the digital era, or else the organization will lose the 

opportunity and the job they currently have. Besides, business analytics adoption needs to 

continuously upgrade technological infrastructure and software. This condition is a must-

have change because they need these tools and technological upgrades to carry out and 

implement business analytics. The issue here is that business analytics adoption needs 

technological factors to improve. According to Kuan and Chau (2001), the technological 

factor is also perceived as direct benefits and perceived as indirect benefits. So, the 

technology should relate to the creation of a product, service, or market differentiation. 

Secondly, technological factors should perceive as relatively not difficult to understand 

and use. This finding enlightens us that, as a technological factor improves, BAA will be 

adopted effectively.  

Support for H2 demonstrates the positive and significant effect OF has on BAA. OF, such 

as devoting time from top management to the business analytics program in proportion to 

its cost and potential, reviewing plans, following up on results, and facilitating the 

management problems involved with integrating information and communication 

technology (ICT). Managing data resources enhances the effective adoption of business 

analytics in an organization (Ramamurthy et al.,2008). Besides, TF and OF are internal 

factors within an organization. Hence the company needs to effectively use these 

resources. Without complementary internal incentives such as adequate analytical data 

understanding, TF and OF cannot be extensively capitalized on. As a result, firms could 

not sufficiently predict the future and plan ahead. Conversely, TF and OF are enhanced to 

maximize BAA's data-driven forecasting capabilities. Which uses descriptive, predictive, 

and prescriptive analytics to make better decisions, gain insight, and drive action that is 

reliant on strong resources such as TF and OF. This is reflected by the positive and 

significant relationship observed in the results of this study. Besides, TF and OF are 

internal factors within an organization, hence the inability to effectively use these 

resources. Without complementary internal incentives such as adequate analytical data 

understanding, TF and OF cannot be extensively capitalized on. As a result, firms could 

not sufficiently predict the future and plan. This is reflected by the positive and 

significant relationship between OF and BAA, which is observed in the results of this 

study.  

The last resource in the TOE framework is the environment which significantly and 

positively influences the BAA. Influences from the external business environment make 

the company possible to foster BAA by gathering data and information from outside the 

company. The competitive pressures from the external environment that influence the 

company will enhance the adoption of business analytics. The impact of competitors and 

government policy or regulation in which its business operates other external factors that 

influence BAA significantly. Support for H3, this study found that EF positively and 

significantly affects BAA. Nevertheless, these conditions happen because of BAA's 

inherent reactive nature, which makes it more suitable to address external factors such as 

rapidly changing environments (Teece, 2007). Support for H4 shows that BAA positively 

and significantly affects the dynamic Capability. BAA contributes to dynamic capability 

towards the processes of descriptive, predictive, and prescriptive to sense, seize, and 

transform in ambiguity and uncertainty conditions. BAA enhances the sensing, 

coordinating, learning, integrating, and reconfiguring process, ultimately leading to 

enhanced competitiveness levels. The dynamic capabilities perspective helps to shed light 

on how to employ big data analytics to detect, anticipate and respond to an uncertain 

environment. 

Supports for H5 and H6 are consistent with Stevens and Johnson (2016) and Vidgen et al. 

(2017), who found a positive and significant relationship between Business analytics and 

performance. BAA improves a firm's effectiveness inside and outside an organization so 
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they can work more productive, effective, and successful. In the end, BAA significantly 

and positively enhances and influences a firm's competitive advantage with the product, 

services, and market differentiation. Dynamic Capability can also influence and 

positively impact competitive advantage by making firms adapt faster to new conditions 

under uncertainty than their competitors. This condition increases efficiency, identifies 

new business opportunities, and creates CA directly. In addition, this study found that 

both BAA and dynamic capability positively and significantly affect CA, with BAA 

having a much higher impact than dynamic capability. BAA is able to create a larger 

degree of CA as it mediates the maximization of TF and OF. Moreover, BAA relies on 

analytical data in addition to business understanding which enables the forecasting and 

automation of future strategic decisions. The maximization of resources and future 

insight, which dynamic capability is incapable of doing to a competitive degree. 

Conclusively, the game-changing adoption of business analytics over the dynamic 

Capability serves a much more strategic role for firms in achieving competitive 

advantage. 

Table 3. Results of Hypothesis Testing 

 
Estimates 

T 

Statistics 
P Values 

Remark 

Technological-> Business Analytics Adoption 0.34    *** <0.001 Supported 

Organizational-> Business Analytics Adoption 0.59   0.01    <0.05 Supported 

Environmental -> Business Analytics Adoption 0.28   0.08 <0.10 Supported 

Business Analytics Adoption->Dynamic Capability 0.93     *** <0.001 Supported 

Business Analytics Adoption->Competitive Advantage 0.36 
       

  0.008 

<0.010 Supported 

Dynamic Capability->Competitive Advantage 0.48   0.002 <0.010 Supported 

 

Figure 1. Structural Model 

These findings highlight the importance of the TOE framework that BAA mediates to 

create a competitive advantage. Besides, this study shows BAA mediated Technological 

and organizational factors to dynamic capability from the results of the Sobel Test 

calculation of Technological factors as follows. The z-value is 2.317, with a standard 

error of 0.134 and a p-value of 0.02049952. The z-value obtained is 2.317 > 1.96, and the 

p-value is 0.02049952 < 0.05, proving that BAA is able to mediate the relationship 

between TF and dynamic capability. The mediating role of BAA proved significant. The 

Sobel test calculation of Organizational factors shows the z-value is 4,627 with a standard 
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error of 0.118 and a p-value of 0.02049952. The z-value obtained is 2.317 > 1.96, and the 

p-value is 0.0000037 < 0.05, thus proving that BAA is able to mediate the relationship 

between OF and dynamic capability. Nevertheless, BAA proved to be insignificant in 

mediating environmental factors to dynamic capability. From the results of the Sobel Test 

calculation, the z-value is 1.725 with a standard error of 0.150 and a p-value of 

0.08444977. The z-value obtained is 1.725 < 1.96, and the p-value is 0.08444977 > 0.05, 

thus proving that BAA does not mediate the relationship between EF and dynamic 

capability.  

Other important results from this study related to previous literature, this study suggests 

that TF, OF, and EF are more directly related to BAA than to dynamic capability. 

Additionally, we can see the connection for H3 to support BAA is the lowest factor 

compared to TF and OF. As seen in Table 3 and Figure 1, the coefficient for H3 is 0.28, 

and the lowest coefficient is compared to H1 (0,34) and H2 (0,59). So, among each factor 

in TOE framework, the organizational factor has the highest impact on BAA, followed by 

the technological factor, as we can see from the result that all toe factors significantly and 

positively support BAA as an integrated framework. Although all TOE factors influence 

and enhance BAA, a company should focus on organizational factors, technological 

factors, and environmental factors, respectively. The direct impact of BAA on DC (0,93) 

is higher than on CA (0,35) directly. Dynamic capability is important in mediating BAA 

to achieve CA. From the results of the Sobel Test calculation, the z-value is 2.914 with a 

standard error of 0.153 and a p-value of 0.00356119. The z-value obtained is 2.914 > 

1.96, and the p-value is 0.00356119 < 0.05, thus proving that DC is able to mediate the 

relationship between BAA and CA. The mediating role of DC proved significant. The 

mediated of DC is an important role of BAA in achieving CA. Even BAA and CA has 

direct correlation, BAA mediated by DC to CA are higher influence (0,93 x 0,48) than the 

indirect one (0.35 versus 0.93 x 0.48 = 0.446), meaning to impact CA, BAA better 

mediated by DC. The crucial role of BAA is to support DC, and the more powerful role of 

DC is to utilize the use of BAA in achieving CA. In conclusion, CA can rely on the 

strategic role of DC, and DC can be enhanced through the BAA as a game-changer in this 

digital era by creating a product, services, and market differentiation using the extensive 

use of data. 

 

5. CONCLUSION  

Based on the discussions above and to answer the research question, we can conclude that 

technological, organizational, and environmental factor can impact competitive advantage 

indirectly through business analytics adoption and dynamic capability. TOE framework 

can increase business analytics adoption in relation to enhancing the effect on dynamic 

capability and competitive advantage. Business analytics adoption can, directly and 

indirectly, improve competitive advantage. Business analytics adoption relays to dynamic 

capability (0.93 x 0.48 = 0.446) to achieve competitive advantage is better than business 

analytics adoption directly to competitive advantage (0.35). Business analytics adoption 

and dynamic capability play an important role in achieving competitive advantage. 

Essentially, we have two paths to achieve competitive advantage through business 

analytics adoption and dynamic capability. Business analytics adoption can directly 

impact competitive advantage, and business analytics adoption can also relay to dynamic 

capability to impact competitive advantage. From the results of the Sobel Test calculation 

above, the z-value obtained is 2.914 > 1.96, and the p-value is 0.00356119 < 0.05, thus 

proving that dynamic capability is able to mediate the relationship between business 

analytics adoption and competitive advantage. Without considering errors, business 

analytics adoption directly impacts competitive advantage has a lower coefficient score 

than business analytics adoption mediated by dynamic capability to impact competitive 

advantage. From the study above, business analytics adoption and dynamic capability 

play a more important role as mediated for TF, OF, and EF to impact competitive 
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advantage. From the Sobel test calculation, we can conclude business analytics adoption 

mediated the relationship between TF and OF, but business analytics adoption proved to 

be insignificant in mediating environmental factors to dynamic capabiltiy. The adoption 

of business analytics needs TF, OF, and EF as the internal and external resources to 

enhance the business analytics adoption and dynamic capabiltiy in achieving competitive 

advantage. In the digital era, organizations need technologies to transform data, people's 

skills and ideas to be applied to improve products, processes, and procedures. Technology 

improves the adoption of business analytics, and in the end, these resources and processes 

create better product differentiation and market differentiation. To enhance business 

analytics adoption in achieving competitive advantage, technological, organizational, and 

environmental factor are significant resources. Besides, business analytics adoption can 

be improved through the dimensions within the business analytics adoption itself, namely 

increasing data acquisition and processing capabilities and descriptive, predictive, and 

prescriptive analytic capabilities within the company. These improvements are mostly 

concerned with achieving the firm's competitive advantage.  

Besides technological factors, organizational factors, such as the top management's 

support of adopting and implementing business analytics, influence the opportunities for 

improved competitive dynamic capability and the firm's competitive advantage 

performance. This finding reminds organizations to adopt and implement business 

analytics to gain a firm's dynamic capability and competitive advantage. This study was 

framed and proved that technological-organizational-environmental factors such as the 

TOE framework influences business analytics adoption. Although such a frame was 

developed based on an in-depth literature review, this study can empirically demonstrate 

causal-effect relations shown in Figure 1 with cross-sectional data, and, therefore, we 

propose future studies will investigate the robustness of the TOE framework, is it really a 

solid framework that should be integrated as a factor or not. The next study can also be 

conducted with more samples in a longitudinal manner. 

Furthermore, the model shown in Figure 1 has not considered knowledge retention and 

internal collaboration within the firm, such as avoiding silos sharing resources and 

information between divisions. The organization needs to understand internal 

collaboration within the division and not keep data in silos. Knowledge retention and 

collaboration, for example, can mediate the relationship between business analytics 

adoption and dynamic capability in achieving competitive advantage. In contrast, an 

external collaboration between a firm in the same industry may moderate the relationship 

between business analytics adoption and dynamic capability. So, future studies should 

include those factors or others in the research model. This study was conducted in an E-

commerce company with specific characteristics that make the generalization of its 

findings problematic. Therefore, we suggest future studies be taken on other companies 

with different characteristics from the E-commerce company. Such companies could be a 

more traditional company that has also experienced business analytics adoption signified 

by the existence of technology and that has long been practicing business analytics 

adoption, as well as a manufacturing company that has adopted business analytics to 

make its operations more effective and achieve a competitive advantage to win a stiff 

competition in the industry. 
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