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Abstract: -  

In this paper, we explore the concept of generalized πg-locally closed sets and investigate 

their properties within the framework of ideal topological spaces. We introduce a new class 

of functions, namely πgl-continuous functions, by leveraging the interplay between closed 

sets and specific kernels. Our study delves into the intricate relationships between these 

novel sets and functions, shedding light on their behaviour and applicability within the 

realm of ideal topological spaces, through rigorous analysis, we establish fundamental 

properties and theorems, providing a comprehensive understanding of the generalized πg- 

locally closed sets and πgl-continuous functions in this context. This research contributes 

to the border field of topology by extending the existing knowledge base and paving the 

way for further exploration in this area. 
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1. INTRODUCTION  

The initiation of the study of generalized closed sets was done by Levine1  in 1970. The 

notion of πg-closed sets a1s a weak form of generalized closed sets was introduced by 

Dontchev & Noiri 2 . The notion of locally closed sets in a topological space was 

introduced by. Ganster & Reilly3 , further studied the properties of locally closed sets and 

defined the LC-continuity and LC-irresoluteness. Balachandran et al4 introduced the  

Concepts of generalized locally closed sets and GLC-continuous functions and investigated 

some of their properties. In 1997, Arockiarani et al. 5  studied regular generalized locally 

closed sets and RGL-continuous functions in a topological space. The aim of this chapter 

is to continue the study of generalizations of locally closed sets and investigate the classes 

of πgl-continuous functions and πgl-irresolute functions in a topological space. Throughout 

this thesis, a space (X, τ) denotes a topological space with a topology τ on which no 

separation axioms are assumed unless explicitly stated. For a subset A of X, cl (A) and int 

(A) denote the closure of A and the interior of A with respect to (X, τ) respectively.   

 

2.1   Preliminaries 

Definition 2.1.1   Power Set (P(X)): For any set X, the power set P(X) is the set of all 

subsets of  

                               X, including the empty set and X itself. 

 

Definition 2.1.2   Topology (X, τ):   Here, X represents a set, and τ is a collection of subsets 

of X   

                         that satisfy certain properties defining the concept of open sets.                                                          

                         These open sets are drawn from τ, forming a topology on X. 
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 Definition 2.1.3   Closure (clθ(A)): The closure of a set A, denoted clθ(A), consists of all  

                                elements x in the space X such that for every open set U in the topology    

                          τ containing x, the intersection of the closure of U and A is not empty. 

In  

                          simpler terms, it includes all the points that are adherent to A under the 

θ- 

                          topology. 

 

Definition 2.1.4   θ-Closed Set: A set A contained within the space (X, τ) is considered θ- 

                          closed if it equals its closure under the θ-topology. This implies that 

every            

                          point in A is adherent to A itself. 

 

Definition 2.1.5   Complement of a θ-Open Set: The complement of a θ-open set is called θ-  

                         closed. 

 

Definition 2.1.6    A subset A of a space (X, τ) is called 

1. Regular open (Stone) 6  if A = int (cl (A)). 

2. π-open (Zaitsav) 7  if the finite union of regular open sets. 

3. Generalized closed (g-closed) (Levine)1 if cl (A)  U whenever A  U and U is 

open in X. 

4. πg-closed (Dontchev & Noiri) 2  if cl (A)  U whenever A  U and U is π-open 

in X. 

5. θ -generalized closed (θ-g-closed) (Dontchev & Maki) 8  if clθ(A)  U whenever 

A  U and U is open in X. 

6. Locally closed (Ganster & Reilly) 3  if A = S ∩ F where S is open and F is closed 

in X. 

7. Generalized locally closed (glc) (Balachandran et al.) 9  if A = S ∩ F where S is 

g-open and F is g-closed in X. 

8. θ-generalized locally closed (θglc) (Arockiarani & Balachandran) 10  if A = S ∩ 

F where S is θ-g-open and F is θ-g-closed in X. 

9. θ-locally closed (θlc) (Arockiarani & Balachandran) 10  if A = S ∩ F where S is 

θ-open and F is θ-closed in X. 

10. θlc-set (Arockiarani et al.) 10  if A = S ∩ F where S is θ-open and F is closed in 

X. 

11. θlc -set (Arockiarani et al. 10  if A = S ∩ F where S is open and F is θ-closed in 

X. 

12. glc-set (Balachandran et al) 9  if A = S ∩ F where S is g-open and F is closed in 

X 

13. glc-set (Balachandran et al. 9  if A = S ∩ F where S is open and F is g-closed in 

X. 

14. θ-glc-set (Arockiarani et al.) 10 if A = S ∩ F where S is θ-g-open and F is closed 

in X. 

15. θ-glc-set (Arockiarani et al.) 10  if A = S ∩ F where S is open and F is θ-g-

closed in X. 

 The complements of the above mentioned closed (open) sets are called their 

respective open (closed) sets. 

 

Remark 2.1.7 (Dontchev & Maki) 8 

The following diagram holds in a topological space. 

θ-closed → θ-g-closed 

↓    ↓ 

closed →g-closed →πg-closed 

 

Figure 2.1 Implication diagram 

Definition 2.1.8  
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A function f: (X, τ) →(Y, σ) is called 

1. LC-continuous (Ganster & Reilly) 3  if f −1(V) is locally closed in (X, τ) for every 

Vσ. 

2. GLC-continuous (Balachandran et al.) 9 if f −1(V) is glc-set in (X, τ) for every Vσ. 

3. θ GLC-continuous (Arockiarani & Balachandran) 10 if f−1 (V) is θglc-set in (X, τ) 

for every Vσ. 

4. θ -LC-continuous (Arockiarani & Balachandran) 10  if f−1 (V) is θlc-set in (X, τ) 

for every Vσ. 

 

Theorem  2.1.9 (Ekici & Baker) 11 If A is π-open and πg-closed in a space (X, τ), then 

A is closed. 

 

Lemma 2.1.10 (Dontchev & Noiri 2 

For πg-closed sets of a space X, the following properties hold: 

1.  Every finite union of πg-closed sets is always a πg-closed set. 

2.  Even a countable union of πg-closed sets need not be a πg-closed set. 

3.  Even a finite intersection of πg-closed sets may fail to be a πg-closed set. 

 

Lemma 2.1.11 (Ekici & Baker 2007) 11 

A set A of X is πg-open if and only if F  int(A) whenever F  A and F is π- closed.  

 

2.2  g-LOCALLY CLOSED SETS 

 

Definition 2.2.1  

A subset S of a space (X, τ) is said to be πg-locally closed (πglc) if S = G ∩ F where G is 

πg-open and F is πg-closed in (X, τ). 

Definition 2.2.2  

 

A subset S of a space (X, τ) is called πglc if there exists a πg-open set G and a closed set 

F of (X, τ) such that S = G ∩ F. 

 

Definition 2.2.3  

A subset B of a space (X, τ) is called πglc if there exists an open set G and a πg-closed set 

F of (X, τ) such that B = G ∩ F. 

 The collection of all πg-locally closed (resp. πglc, πglc) sets of a space (X, 

τ) will be denoted by πGLC(X, τ) (resp. πGLC(X, τ), πGLC(X, τ)). 

From the above definitions we have the following results. 

 

Theorem  2.2.4   

1.  Each locally closed set is πglc. 

2.  Each θ-locally closed set is πglc. 

3.  Each θglc-set is πglc. 

4.  Each πglc-set or πglc is πglc. 

5.  Each glc-set is πglc. 

6.  Each θlc-set is πglc or πglc. 

7.  Each glc-set is πglc. 

8.  Each θlc-set is πglc. 

9.  Each y θlc-set is πglc. 

10.  Each θglc-set is πglc. 

11.  Each locally closed set is πglc and πglc. 

However the converses of the above are not true may be seen by the following Examples. 

 

Example 2.2.5  
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Let X = {a, b, c, d} and τ = {, X, {a, b}, {a, b, c}, {a, b, d}}. Then locally closed sets are 

, X, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b,d} and πglc-sets are P(X). It is clear that {a, 

c} is πglc-set but it is not locally closed. 

 

Example 2.2.6 

In Example 2.2.5, θ-locally closed sets are , X and πglc-sets are P(X). It is clear that {a, 

b} is πglc-set but it is not θ-locally closed set. 

 

Example 2.2.7  

In Example 2.2.5, θglc-sets are , X, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c,d} and πglc-

sets are P(X). It is clear that {b, c} is πglc-set but it is not θglc-set. 

 

Example 2.2.8  

Let X = {a, b, c, d, e} and τ = {, X, {a}, {e}, {a, e}, {c, d}, {a, c, d}, {c, d, e},  

{a, c, d, e}, {b, c, d, e}}. Then πglc-sets are , X, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, 

{a,d}, {a, e}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, 

{c, d, e}, {a, b, c, d}, {a, c, d, e}, {b, c, d, e} and πglc-sets are P(X). It is clear that {b, c} 

is πglc-set but it is not πglc-set. 

 

Example 2.2.9  

In Example 2.2.5, πglc-sets are P(X) and glc-sets are , X, {a}, {b}, {c},{d}, {a, b}, {c, d}, 

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. It is clear that {b, c} is πglc-set but it is not 

 glc-set. 

 

Example 2.2.10  

In Example 2.2.5, θlc-sets are , X and πglc (or) πglc-sets are P(X). It is clear that {a, b} 

is πglc (or) πglc-set but it is not θlc-set. 

 

Example 2.2.11  

In Example 2.2.5, glc-sets are , X, {a}, {b}, {c}, {d}, {a, b}, {c, d}, {a, b,c}, 

 {a, b, d} and πglc-sets are P(X). It is clear that {b, c} is πglc-set but it is not glc-set. 

 

Example 2.2.12  

In Example 2.2.5, θlc-sets are , X, {c}, {d}, {c, d} and πglc-sets are P(X).  

It is clear that {a, d} is πglc-set but it is not θlc-set. 

 

Example 2.2.13  

In Example 2.2.5, θlc-sets are , X, {a, b}, {a, b, c}, {a, b, d} and πglc-sets are P(X). It 

is clear that {a} is πglc-set but it is not θlc-set. 

 

Example 2.2.14  

In Example 2.2.5, θglc-sets are , X, {a}, {b}, {c}, {d}, {a, b}, {c, d} and πglc-sets are 

P(X). It is clear that {b, c} is πglc-set but it is not θglc-set. 

 

Example 2.2.15  

In Example 2.2.5, locally closed sets are , X, {c}, {d}, {a, b}, {c, d}, {a, b, c},  

{a, b, d} and πglc and πglc-sets are P(X). It is clear that {a, c} is both πglc and πglc-

set but it is not locally closed set. 

 

Theorem 2.2.16  

 For a subset S of a space (X, τ) the following are equivalent: 

1. S  πGLC (X, τ). 

2. S = P ∩ cl(S) for some πg-open set P. 

3. cl(S)−S is πg-closed. 

4. S ∪ (X−cl(S)) is πg-open. 

Proof  
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(1)  (2) Let S  πGLC (X, τ). Then there exists a πg-open set P and a closed set F such 

that S = P ∩ F. Since S  P and S  cl(S) we have S  P ∩ cl(S). Conversely, since  cl(S) 

F, P ∩ cl(S)  P ∩ F = S which implies that S = P ∩ cl(S). 

  (2)  (1): Since P is πg-open and cl(S) is closed P ∩ cl(S)  πGLC(X, τ). 

 (3)  (4): Let F = cl(S)−S. Then F is πg-closed by the assumption and  

X−F = X ∩ (cl(S) −S) c = S ∪ (X−cl(S)). But X−F is πg-open. This shows that S (X−cl(S)) 

is πg-open. 

 (4)  (3): Let U= S ∪ (X−cl(S)). Then U is πg-open. This implies that X− U 

is πg-closed and X− U = X−(S ∪ (X−cl(S))) = cl(S) ∩ (X−S) = cl(S)−S. Thus cl(S)−S is 

πg-closed. 

 (4)  (2): Let U = S ∪ (X−cl(S)). Then U is πg-open. Hence we prove that  

S = U ∩ cl(S) for some πg-open set U. U ∩ cl(S) = (S ∪ (X−cl(S))) ∩ cl(S) = (cl(S) ∩S) ∪ 

(cl(S) ∩ X−cl(S)) = S ∪  = S. Therefore S = U ∩ cl(S). 

 (2)  (4): Let S = P ∩ cl(S) for some πg-open set P. Then we prove that S ∪ 

(X−cl(S)) is πg-open. S ∪ (X−cl(S)) = (P ∩ cl(S)) ∪ (X−cl(S)) = P ∩ (cl(S) ∪ X−cl(S)) = 

P ∩ X = P which is πg-open. Thus S ∪ (X−cl(S)) is πg-open. 

 

Definition 2.2.17  

A topological space (X, τ) is called πg-submaximal (resp. g-submaximal if every dense 

subset is πg-open (resp. g-open). 

 

Theorem 2.2.18  

A topological space (X, τ) is πg-submaximal if and only if P(X) = πGLC (X, τ). 

 

Proof  

Necessity: Let S  P(X) and let V = S ∪ (X−cl(S)). Then V is πg-open and 

 cl(V) = cl(S) ∪ (X−cl(S)) = X. This implies that V is a dense subset of X. By the above 

Theorem S  πGLC (X, τ). Therefore, P(X) = πGLC (X, τ). 

 

Sufficiency: Let S be a dense subset of (X, τ). Then S ∪ (X−cl(S)) = S  S  πGLC (X, 

τ) and S is πg-open. This proves that X is πg-submaximal. 

 

Remark 2.2.19  

It follows from definitions that if (X, τ) is g-submaximal, then it is πg-submaximal. But the 

converse is not true as seen by the following Example. 

 

Example 2.2.20  

In Example 2.2.5, dense sets are X, {a}, {b}, {a, b}, {a, c}, {a,d}, {b, c},{b, d}, 

 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, g-open sets are , X, {a}, {b}, {a, b}, {a, b, c}, 

{a,b,d} and πg-open sets are P(X). Then it is πg-submaximal but not g-submaximal. 

 

Theorem 2.2.21  

For a subset S of (X, τ) if S   πGLC(X, τ) then there exists an open set P such that S = P 

∩ πg-cl(S) where πg-cl(S) is the πg-closure of S. 

 

Proof  

Let S  πGLC(X, τ). Then there exists an open set P and a πg-closed set F such that S P 

∩ F. Since S  P and S  πg-cl(S), we have S  P ∩ πg-cl(S). Conversely since πg-cl(S) 

 F, we have P ∩ πg-cl(S)  P ∩ F = S. Thus S = P ∩ πg-cl(S). 

 

Theorem 2.2.22  

Let A and B be subsets of (X, τ). If A  πGLC (X, τ) and B  πGLC (X,τ) then  

A ∩ B  πGLC(X, τ). 

Proof  
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             Let A and B  πGLC (X, τ). Then there exist πg-open sets P and Q such that  

A = P ∩ cl(A) and B = Q ∩ cl(B). Therefore A ∩ B = P ∩ cl(A) ∩ Q ∩ cl(B) = P ∩ Q ∩ 

cl(A) ∩ cl(B) where P ∩ Q is πg-open and cl(A) and cl(B) is closed. This shows that A ∩ 

B  πGLC(X, τ). 

 

Theorem 2.2.23  

If A  πGLC (X, τ) and B is open, then A ∩ B  πGLC (X, τ). 

 

Proof 

Let A  πGLC (X, τ). Then there exists an open set G and a πg-closed set F such that A 

= G ∩ F. So A ∩ B = G ∩ F ∩ B = G ∩ B ∩ F. This proves that A ∩ B  πGLC  

(X, τ). 

 

Theorem 2.2.24  

If A  πGLC(X, τ) and B is πg-open, then A ∩ B  πGLC (X, τ). 

 

Proof  

Let A  πGLC(X, τ). Then A = G ∩ F where G is πg-open and F is πg-closed. So  

A ∩ B = G ∩ F ∩ B = G ∩ B ∩ F. This implies that A ∩ B  πGLC (X, τ). 

 

Theorem 2.2.25  

If A  πGLC(X, τ) and B is πg-closed π-open subset of X, then A ∩ B  πGLC (X, τ). 

 

Proof  

Let A  πGLC(X, τ). Then A = G ∩ F where G is πg-open and F is closed.  

 A ∩ B = G ∩ (F ∩ B) where G is πg-open and F ∩ B is closed. Hence A ∩ B  πGLC*(X,τ). 

 

Theorem 2.2.26 

Let A and Z be subsets of (X, τ) and let A  Z. If Z is πg-open in (X,τ) and  

A  πGLC(Z, τ/Z), then A  πGLC(X, τ). 

 

Proof  

Suppose A is πglc-set, then there exists a πg-open set G of (Z, τ / Z) such that  

A = G ∩ clZ(A). But clZ(A) = Z ∩ cl (A). Therefore, A = G ∩ Z ∩ cl (A) where G ∩ Z is 

πg-open. Thus A  πGLC(X, τ). 

 

Remark 2.2.27  

The following Example shows the assumption that Z is πg-open cannot be removed from 

the above Theorem. 

 

Example 2.2.28  

Let X = {a, b, c, d, e}, τ = {, X, {a}, {e}, {a, e}, {c, d}, {a, c, d}, {c, d, e},  

{a, c, d, e}, {b, c, d, e}}. Let V be the collection of all πg-open sets of (X, τ). Then V = {, 

X, {a}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e}, {c, d}, {c, e}, {d, e}, {a, c, d}, {a, c, e}, {a, d, 

e}, {c, d, e}, {a, c, d, e}, {b, c, d, e}}. Put Z = A = {a, b, c}. Then Z is not πg-open and  

A  πGLC (Z, τ/Z). However A  πGLC  (X, τ). 

 

Theorem 2.2.29  

If Z is πg-closed, π-open set in (X, τ) and A  πGLC(Z, τ/Z) then A  πGLC*(X, τ). 

 

Proof  

Let A  πGLC (Z, τ/Z). Then A = G ∩ F where G is πg-open and F is closed in  

(Z, τ/Z). Since F is closed in (Z, τ/Z), F = B ∩ Z for some closed set B of (X, τ). Therefore 

A = G ∩ B ∩ Z. Then B ∩ Z is closed. Hence A  πGLC*(X, τ). 

Theorem 2.2.30  

If Z is closed and open in (X, τ) and A  πGLC(Z, τ/Z), then A  πGLC(X, τ). 
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Proof 

Let A  πGLC (Z, τ/Z). Then there exists a πg-open set G and a πg-closed set F of  (Z, τ/Z) 

such that A = G ∩ F. Then by the above Theorem A  πGLC(X, τ). 

 

Theorem 2.2.31  

If Z is πg-closed, π-open subset of X and A  πGLC(Z, τ/Z), then A  πGLC(X, τ). 

 

Proof  

Let A  πGLC (Z, τ/Z). Then A = G ∩ F where G is open and F is πg-closed in  

(Z, τ/Z). Since Z is πg-closed π-open subset of (X, τ), then F is πg-closed in (X, τ). Therefore 

A  πGLC(X, τ). 

 

Theorem 2.2.32  

If A is πg-open and B is open, then A ∩ B is πg-open. 

 

Proof  

Let A be πg-open. Then int (A)  F whenever A  F and F is π-closed set. 

Suppose A ∩ B  F, then we prove that int (A ∩ B)  F. Since B is open,  

int (B) = B  F. 

 Therefore by assumptions int (A ∩ B) = int (A) ∩ int (B) F. This proves that 

 A ∩ B is πg-open. 

 

Theorem 2.2.33  

Suppose that the collection of all πg-open sets of (X, τ) is closed under finite unions. Let  

 πGLC(X, τ) and B  πGLC(X, τ). If A and B are separated, then A ∪ B  πGLC(X, 

τ). 

 

Proof  

Let A, B  πGLC(X, τ). Then there exist πg-open sets G and S of (X, τ) such that  

A = G ∩ cl (A) and B = S ∩ cl (B). Put V = G ∩ (X−cl (B)) and W = S ∩ (X−cl (A)). Then 

V and W are πg-open sets and A = V ∩ cl (A) and B =W∩ cl (B). Also V ∩ cl (B) = and 

W∩ cl (A) =. Hence it follows that V and W are πg-open sets of  (X, τ). Therefore A ∪ B 

= (V ∩ cl (A)) ∪ (W ∩ cl (B)) = V ∪ W ∩ cl (A) ∪ cl (B). Here  V ∪ W is πg-open by 

assumption. Thus A ∪ B  πGLC(X, τ). 

 

Remark 2.2.34  

The assumptions that A and B are separated cannot be removed from Theorem 2.2.33. 

 

Example 2.2.35  

Let X = {a, b, c, d}, τ = {, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}. Then {a,b} and {a, d}  

πglc(X, τ) but {a, b, d}  πglc(X, τ), since they are not separated. For we have {a, b} ∩ 

cl({a, d}) = {a}   and {a, d} ∩ cl({a, b}) = {a, d} ≠ . 

 

Theorem 2.2.36     

Let {Zi : i  I} be a finite πg-closed cover of (X, τ) and let A be a subset of (X, τ). If A ∩ 

Zi  πGLC(Zi, τ/Zi) for every i  I, then A  πGLC(X, τ). 

 

Proof     

For every i  I there exists a set Ui  τ and a πg-closed set Fi of (Zi, τ/Zi) such that  

 A ∩ Zi = U i ∩ (Zi ∩ Fi). Then A = ∪ {A ∩ Zi : i  I} = ∪ {U i : i  I} ∩ (∪ {Zi ∩ Fi : i  

I}). This shows that A  πGLC(X, τ). 

Theorem 2.2.37     

Let (X, τ) and (Y, σ) be topological spaces. 
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1. If A  πGLC(X, τ) and B  πGLC(Y, σ), then A × B  πGLC(X × Y,τ × σ). 

2. If A  πGLC(X, τ) and B  πGLC (Y, σ), then A × B  πGLC (X × Y, τ × σ). 

3. If A  πGLC (X, τ) and B  πGLC (Y, σ), then A × B  πGLC (X × Y, τ × 

σ). 

Proof    

Let A  πGLC(X, τ) and B  πGLC(Y, σ). Then there exist πg-open sets V and V of (X, 

τ) and (Y, σ) and πg-closed sets W and W of X and Y respectively such that A = V ∩ W 

and B = V ∩ W. Then A × B = (V × V) ∩ (W × W) holds. Hence A × B  πGLC(X × 

Y, τ × σ). Similarly the other results follow from the definition. 

 

2.3 gl-CONTINUITY AND πgl-IRRESOLUTENESS 

 

Definition 2.3.1  

A function f: (X, τ) → (Y, σ) is called πgl-continuous (resp. πgl- continuous and πgl-

continuous) if f−1 (V)  πGLC(X, τ) (resp. f−1(V)  πGLC (X, τ), f−1 (V) 2 πGLC (X, τ)) 

for every V  σ. 

 

Definition 2.3.2  

A function f : (X, τ) →(Y, σ) is said to be πgl-irresolute (resp. πgl-irresolute, πgl-

irresolute) if f−1(V)  πGLC(X, τ) (resp. f−1(V)  πGLC(X, τ), f−1(V)  πGLC (X, τ)) 

for every V  πGLC(Y, σ) (resp. V  πGLC (Y, σ), V  πGLC (Y, σ)). 

 

Theorem 2.3.3  

Let f: (X, τ) →(Y, σ) be a function. 

1. If f is LC-continuous then it is πgl-continuous. 

2. If f is θ-LC-continuous then it is πgl-continuous. 

3. If f is θGLC-continuous then it is πgl-continuous. 

4. If f is πgl-continuous then it is πgl-continuous. 

5. If f is θ-LC-continuous then it is πgl or πgl-continuous. 

6. If f is GLC-continuous then it is πgl-continuous. 

7. If f is LC-continuous then it is GLC-continuous. 

8. If f is θGLC-continuous then it is GLC-continuous. 

9. If f is θ-LC-continuous then it is θGLC-continuous. 

10. If f is θ-LC-continuous then it is LC-continuous. 

 The proof follows from the definitions and Theorem 2.2.4. However the 

converses of the above need not be true as shown from the following. 

 

Example 2.3.4  

Let X = Y = {a, b, c, d}, τ = {, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {, Y, {a}, {b}, {a, 

b}}. Let f: (X, τ) → (Y, σ) be the identity function. Then πglc-sets are P(X) and locally 

closed sets are , X, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}. It is clear that f−1({a}) = 

{a} is not locally closed set. We conclude that f is πgl-continuous but not LC-continuous. 

 

Example 2.3.5  

Consider Example 1.3.4. Let f: (X, τ) →(Y, σ) be the identity function. Then πglc-sets are 

P(X) and θ-locally closed sets are , X. It is clear that f−1({a, b}) = {a, b} is not θ-locally 

closed set. We conclude that f is πgl-continuous but not θ-LC-continuous. 

 

Example 2.3.6  

Let X = Y = {a, b, c, d}, τ = {, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {, Y, {a, c}, {a, c, 

d}}. Let f: (X, τ) → (Y, σ) be the identity function. Then πglc-sets are P(X) and θglc-sets 

are , X, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}. It is clear that  f−1({a, c}) ={a, c} is 

not θglc-set. We conclude that f is πgl-continuous but not θGLC-continuous. 

Example 2.3.7   

Let X = Y = {a, b, c, d, e}, τ = {, X, {a}, {e}, {a, e}, {c, d}, {a,c,d}, {c, d, e},  
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{a, c, d, e}, {b, c, d, e}} and σ = {, Y, {b, c}. Let f: (X, τ) → (Y, σ) be the identity function. 

Then πglc-sets are P(X) and πglc-sets are , X, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, 

d}, {a, e}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {c, 

d, e}, {a, b, c, d}, {a, c, d, e}, {b, c, d, e}. It is clear that f−1({b, c}) = {b, c} is not πglc-

set. We conclude that f is πgl-continuous but not πgl-continuous. 

 

Example 2.3.8  

Let X = Y = {a, b, c, d}, τ = {, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {, Y, {a, b}}. Let 

f: (X, τ) → (Y, σ) be the identity function. Then πglc (or) πglc-sets are P(X) and θ-locally 

closed sets are , X. It is clear that f−1({a, b}) = {a, b} is not θ-locally closed set. We 

conclude that f is πgl or πgl-continuous but not θ-LC-continuous. 

 

Example 2.3.9  

Let X = Y = {a, b, c, d}, τ = {, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {, Y, {a}, {b}, {a, 

b}}. Let f: (X, τ) →(Y, σ) be the identity function. Then πglc-sets are P(X) and glc-sets are 

φ, {a}, {b}, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X. It is clear 

that f−1({a}) = {a} is not glc-set. We conclude that f is πgl-continuous but not GLC-

continuous. 

 

Example 2.3.10  

Let X = Y = {a, b, c, d}, τ = {, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {, Y, {a, c}, {a, b, 

c}}. Let f: (X, τ) →(Y, σ) be the identity function. Then glc-sets are P(X) and locally closed 

sets are , X, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}. It is clear that f−1({a, c}) = {a, c} 

is not locally closed set. We conclude that f is GLC-continuous but not LC-continuous. 

 

Example 2.3.11  

Let X = Y = {a, b, c, d}, τ = {, X, {a, b}, {a, b, c}, {a, b, d}} and σ = {, Y, {a, c}, {a, c, 

d}}. Let f: (X, τ) →(Y, σ) be the identity function. Then glc-sets are P(X) and θglc-sets 

are, X, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}. It is clear that f−1({a, c}) = {a, c} is not 

θglc-set. We conclude that f is GLC-continuous but not θGLC-continuous. 

 

Example 2.3.12  

Consider Example 2.3.8. Let f: (X, τ) →(Y, σ) be the identity function. Then θ glc-sets are 

, X, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d} and θ-locally closed sets are , X. It is clear 

that f−1({a, b}) = {a, b} is not θ-locally closed set. We conclude that f is θGLC-continuous 

but not θ-LC-continuous. 

 

Example 2.3.13  

Consider Example 2.3.8. Let f: (X, τ) →(Y, σ) be the identity function. Then locally closed 

sets are , X, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d} and θ-locally closed sets are {, 

X}. It is clear that f−1({a, b}) = {a, b} is not θ-locally closed set. We conclude that f is LC-

continuous but not θ-LC-continuous. 

  

From the above definitions, results and Examples we have the following implications. 

 

Remark 2.3.14  

We obtain the following diagram from the above discussions. 
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Figure 2.2 Implication diagram 

 

Theorem  2.3.15  

1. If f: X → Y is πgl-continuous and g: Y → Z is continuous, then  

            g ◦ f:: X → Z is πgl-continuous. 

2. If f: X → Y is πgl-irresolute and g: Y → Z is πgl-continuous, then             

            g ◦ f:: X → Z is πgl-continuous. 

3. If f: X → Y is πgl-irresolute and g: Y → Z is GLC-continuous, then  

             g ◦ f: X →Z is πgl-continuous. 

4. If f: X → Y and g: Y → Z are πgl-irresolute, then g ◦ f:: X → Z is also  

             πgl-irresolute. 

 

The proof follows from the definitions and Theorem 2.2.4. 

 

2.4   CONCLUSION 

In image processing and digital topology, the concept of πg locally closed sets in ideal 

topological spaces helps in defining and analysing the connectivity and structure of objects 

represented digitally. These sets contribute to characterizing shapes and patterns, aiding in 

tasks such as object recognition, shapes analysis and image segmentation. They provide a 

foundation for understanding the topological properties of digital images, which is crucial 

for various computer vision. 

In recent trends, continuous functions between spaces endowed with the πgl 

continuous functions in ideal topology, have garnered attention due to their significance in 

studying topological properties. This specialized framework offers a nuanced 

understanding of continuity within ideal topological spaces, enabling deeper insights into 

the behaviour of functions and their  preservation of structural properties. The exploration 

of πgl continuous functions within ideal topologies stands as a promising are, festering 

advancements in topology and its applications.      
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