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Abstract 

As a consequence of technological advancement and the essential for wastewater treatment 

systems with low operating costs, we have created environmentally driven treatment 

methods to mitigate environmental concerns. Conventional technology has shown to be 

resource intensive, capital-intensive, energy-intensive, highly automated, and labor-

intensive. It is also successful in removing pollutants from wastewater. Since then, a more 

trustworthy and cost-effective method has emerged, one that takes use of organic matter, 

plants found in their natural environments, and sunlight37. This research compared the 

effectiveness of the standard treatment system with that of a thin Film Diffuse Gradient 

sampler to look into the frequency of occurrence of organic pollutants. 

 

1.Introduction 

EOCs in waste1-water effluents may persist, be hazardous, and bioaccumulate in biota. 

WWTPs purify wastewater before discharging it43. Antibiotics, EDCs, pharmaceuticals, 

and PPCP components may remain in wastewater following conventional treatment34. It 

has also been shown that occasional increases in wastewater influent hydraulic loads 

seldom surpass the plants' design capacity, resulting in the direct wastewater discharge 

into recipient water bodies inadequate treatment. Thus, developing innovative wastewater 

treatment systems to eliminate EOCs is difficult since we must decrease their conservation 

impact, especially on marine life and nutrition manacles. 

ICWs, or integrated built wetlands, may reduce EOCs in wastewater better than WWTPs 

due to their low operating costs and high storage costs. Plants in wastewater treatment 

ponds improve water quality at little cost. 

This study and others assessed removal efficiency while assessing nature-based technology 

as a wastewater treatment option. Nature-based methods for reducing nutrient runoff from 

arable land are cost-effective, but therapies must be affordable. Sedimentation and filtering 

remove BOD/COD and suspended particles, and Reed beds must be included in the cost5. 

used the Czech Republic's 18 m2 to 4493 m2 of vegetated beds and 4 to 1100 people as an 

example. 

Plant absorption, denitrification, and nitrification remove biofilm nitrogen and nitrates, but 

soil adsorption may lose nitrogen and other nutrients. Calcium, iron, and aluminum 

precipitations purify phosphorus nutrients. Viruses may die, be filtered, or be adsorbed. 

Phragmites australis dominates European reed beds. Before releasing nutrients from 

treatment material, plants must be gathered and decomposed at the right moment. 

 

2.The study's objectives 
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This research compared the efficiency of three conventional and six natural wastewater 

treatment facilities in Italy in removing pollutants from items. It aims to determine if 

environmental based systems are a feasible another to conservative W.W.T.P s by 

comparing their capabilities and features. 

 

3. Resources and Procedures 

3.1 Elements and Substances 

All compounds utilized in the production of DGTs at Bio life limited (Hyderabad) are 

listed in Table Information is provided in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 DGT Analysts Research 

HLB binding gels were 0.56 mm thick with 0.35 mm spacers, and a 0.80 mm agarose 

disseminative gel was used on top. 

3.3 Sampler 

The current investigation opted to examine a collective of nine wastewater treatment 

plants (WWTPs) located in Vijayawada. This group consisted of three conventional and 

six environmentally sustainable facilities. Table 2 presents a concise overview of the 

average temperature, pH levels, and internal treatment methodologies utilized by the 

selected WWTPs. The present study employed the use of Dispersive Inclines in Tinny 

Films (D.G.T) passive samplers, a technique that is both cost-effective and simple, to 

collect waterway samples for the purpose of quantifying treatments and individual care 

products (PPCPs) in the flowing in waste of wastewater treatment plants. During a 7-

10day period in June 2020, a comprehensive evaluation was conducted on 54 Diffusive 

Gradients in Tinny Films (D.G.T) in triplicate at the inflowing, intermediate, and effluent 

locations of the Wastewater Treatment Plants (W.W.T.Ps). 

 

Name Purity 

Acetonitrile HPLC 

Agarose Bio-analysis 

Ammonia solution 5M, analytical 

Ammonium persulfate ≥ 99%, analytical 

Gel solution - 

Hydrophilic-Lipophilic- 

Balanced 

- 

Milli-Q water 18.2 MΩ cm-1 

Methanol H.P.L.C 

Tetramethyl 

ethylenediamine 

99% 

Sodium chloride  99%,  
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3.4 Compounds of Concentration 

Preservatives, antioxidants, and endocrine disruptors were the three categories of 

compounds that underwent testing. (EDCs). The parabens benzylparaben (BEP), 

butylparaben (BUP), isobutylparaben (i-BUP), propylparaben (PRP), 4-hydroxybenzoic 

acid (PHBA), ethylparaben (ETP), butylparaben (BUP), isobutylparaben (i-BUP), and 

triclosan (TCS) are among those that are toxic to human (TBHQ). 

3.5 Quality Control 

The samples and reference standards were generated concurrently within a singular 

operation at Bio life limited. (Hyderabad). The Department of Chemistry at Anna 

University dispatched samplers via air freight(DHL). The samplers were furnished with 

internal standards and sampling equipment, and laboratory extractions were performed 

using travel blanks and filing blanks. As part of instrumentation experiments, the machine 

was subjected to laboratory blanks. 

3.6 DGT Extraction 

Prior to extraction, the DGT molding surfaces were cleansed of worms and organic residues 

through the use of Milli Q water. The HLB binding gels of the DGT molds were extracted 

and transferred to 15-ml vials. The samples were subjected to injections of various 

parabens, including P.H.B.A-D4, E3-D2, T.C.S-D3, B.P.A-D16, E2-D5, E.E2-D4, and E1-

D4. Five milliliters of Fisher Scientific acetonitrile were added to each sample, which was 

then transferred to a 15-milliliter vial and subjected to ultrasonic treatment for a duration 

of 30 minutes. In this instance, the extractions were conducted using fresh 5 ml vials 

subsequent to the separation of the organic solvents into distinct containers, which were 

subsequently stored at a temperature of 40C in a freezer. A volume of 400 litres of MQ 

water with a composition of 20/80 was mixed with 100 litres of sample solution. A syringe 

filter with a diameter of 0.22 mm made of PTFE material was utilised to filter a volume of 

500 litres. The filtered samples were subsequently transferred to vials and subjected to 

further analysis using LC-MS techniques. 

 

3.7 Biochemical study 

The Shimadzu Liquid Chromatograph Mass Spectrometer 8040 was used to analyze the 

constituents of a Personal Care Product. Ten liters of each extract were loaded onto an 

XBridgeR C18 column with a guard column. The mobile phase was comprised of 5 mM 

NH4OH in both acetonitrile and Milli-Q water. The gradient process was composed of 

15% 5mM NH4OH ACN held for nine minutes, five minutes of 80% HN4HACN held for 

five, and four minutes of 100% HN 4OH ACN. 7.5 minutes of post-run time was required 

to get the column back to its original state before the next injection. 

The internal standard method was used for the measurement of the analytes, but manual 

integration was necessary for a few of the compounds. Chen et al. (2017) have used this 

method before 

3.8 Quantification 

Target analyte concentrations of 1, 2.5, 5, 10, 25, 50, 100, 250, and 500ng/ml were used to 

generate internal calibration curves with correlation values of 0.999.  

 

4. Results and Discussion 
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Data on DGT concentrations for a few analytes in the influents and effluents of traditional 

and biodegradable wastewater treatment facilities in Italy are shown in Tables 3 and 4. 

The absorption mass of these chemicals in the binding gel serves as evidence of their 

frequency. 

 

Graph:1 Concentrations of PPCPs constituents in the Vijayawada wastewater 

treatment facilities' influences, both conventional and natural 

 
Graph:2 PPCPs component concentrations in the effluents of conventional and 

nature-based wastewater facilities in Vijayawada 

  
 

The selected analytes fell into three groups: endocrine disruptors, antioxidants, or 

preservatives. In the influents of the nature-based and conventional WWTP 2, respectively, 

tert-butyl hydroquinone (TBHQ) was only discovered at concentrations of 17.4 and 11.1 

ngL-1. Both manufacturers' effluents were found to be completely free of TBHQ, 

suggesting that this chemical is uncommon in the area. Nonylphenol (NP) concentrations 

were highest in the influents and effluents, with influent levels between 2200 and 4300 

ngL-A and effluent values between 4200 and 27000 ngL-F. The high levels of this chemical 
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found in all of the treatment plants examined suggest that none of the two approaches can 

effectively remove it.  

 

4.1 Nonylphenol 

Nonylphenol belongs to the category of chemical compounds known as "long chain alkyl 

phenols" (LCAPs). Solubilizers, emulsifiers, laundry and dishwashing detergents, and 

antioxidants are common uses for them, but endocrine disruptors and xenoestrogens have 

captured the attention of environmental scientists due to their potential active roles in the 

environment. It is a common constituent of water and soil samples, as well as effluents 

from wastewater treatment facilities and sludge, and commercial formulations for textiles 

and clothing often include a class of surfactants called NPEs. This explains why greater 

concentrations were found in the effluent channels. Tables 3 and 4 detail the tested 

substances' individual concentrations. 

 

4.2 Exclusion tolls 

Six different WWTP technologies were analyzed to determine the rates at which study 

compounds were removed from the body. Research showed that both natural and 

conventional treatment approaches were equally effective in removing preservatives. 

The clearance rate r40% H.E.P to 100% B.U.P for conventional treatment system, while 

it was 5-5% HEP for each of the nature-based methods. 

 

 

             



994 Nature-Based Treatment Technologies For Personal Care Product Ingredient Removal 
 

 

 

 

Graph 3: Preservative removal rates in natural and conventional wastewater 

treatment. 

Conventional methods and two natural technologies successfully eliminated all traces of 

isobutylparaben and isopropyl paraben, while Tert-butylhydroquinone was eliminated with 

100% efficiency by both conventional and nature-based methods. 

 

Graph 4: Antioxidants are removed in both NB and CB treatment technologies. 

Both treatments removed antioxidants. Traditional treatment works removed 22% to 

100% BHA, while NB technologies removed less than 1%  to 100%. 

 

 

 

 

 

.   
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Graph 5: Endocrine disruptors are removed by both natural and conventional 

wastewater treatment methods. 

Conventional treatment works had the highest EDC elimination rates, up to 100% EE2, 

while natural based treatments had the lowest, ranging from NP to 100% E2. Preservatives, 

antioxidants, and endocrine-distributive compounds accounted for the remaining data. 

Figure 4a compares the methylparaben removal efficiency of several WWTPs. 
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Graph 6a: For the elimination of preservatives, natural treatments may be compared 

to traditional wastewater treatment facilities. 

 

 

Graph6b: Antioxidants in wastewater may be removed using both traditional 

wastewater treatment techniques and treatments based on nature. 
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Graph6c: Endocrine disrupting substances may be eliminated using both 

conventional wastewater treatment and natural therapies. 

Graph 6(a)–(c) show the typical exclusion charges for nature-based and conventional 

systems, showing that both are chemically reliant. M.E.P, B.U.P, E.T.P, P.R.P, T.C.S, and 

B.U.P show a small negative correlation of -0.38 between the log Koc and the 

Environmental-based system and a very feeble optimistic correlation of 0.08 thru the 

standard treatment system. Nature-based solutions outperformed wastewater treatment 

approaches for nonylphenol. 

 

5. Conclusion 

This analysis compared the ability of conventional and green wastewater treatment 

systems to remove pharmaceutical and individual maintenance product components 

(PPCPs) from wastewater. The results showed that chemical efficacies were more 

important than technological ones in the removal process. Factors such as initial 

investment, population, wastewater type, and preexisting chemical use all play a role in 

determining the most suitable technique. Plants and microorganisms simplify the 

exclusion and reprocessing of nutrients and metallic element in water and sediments, but 

these practices promote eutrophication. Most POPs are effectively removed by both 

systems, with the exception of antioxidants and Triclosan. 

The efficiency of both waste water treatment procedures is affected by a number of crucial 

criteria, including what they're treated effluents look like chemically. More investigation 

into the existence of the maternal forms of those complexes with harmful eliminations at 

inflowing channels is needed to show the success of removal of such compounds and 

assess both technologies correctly. 
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