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Abstract 

COVID-19 is an infectious disease caused by a new type of coronavirus, the model of 

transmission of which is currently from human to human. Many cities around the world 

have enacted follow-up policies, among others, to control the spread of COVID-19. The 

aim of this paper is to construct a dynamical model and carry out an analytical analysis 

of the stability of the dynamic behavior of coronavirus disease transmission. The form of 

the model is a non-linear system of differential equations with five state variables: 

susceptible individuals, exposed individuals, patients under surveillance in quarantine, 

infected individuals, and recovered individuals. Further, we discussed sensitivity Analysis 

of Parameters.  Furthermore, the Routh–Hurwitz method is used to investigate the 

stability of the non-endemic equilibrium, and manifold center theory is used to analyze 

the stability of the endemic equilibrium. Finally, numerical simulation is demonstrated, in 

order to verify the proposed mathematical model and estimate the epidemic threshold 

parameters based on approximating the infection process. The infection parameters 

model was obtained by fitting the COVID-19 model to data from Indonesia. 
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1. Introduction 

Coronavirus disease 2019 (COVID-19) was first discovered in Wuhan city, Hubei 

Province, China, in December 2019. In early 2020, COVID-19 began to spread globally 

starting from the Asian region, resulting in a viral pandemic. Coronavirus is believed to 

be a zoonotic disease in origin, even though its current transmission mode is human to 

human, and it was quickly stated as a pandemic by the World Health Organization, due to 

the rapid manner in which it spread across the world: within 3 months (i.e., by early April 

2020), it had spread to more than 200 countries. The first case in Indonesia was reported 

in March 2020, and the number of COVID-19 cases since then has stayed consistently 

high, standing at 463,007 as of 14 November 2020, explaining the importance of this 

research. 

COVID-19 represents a global health emergency, having caused millions of infections 

and deaths. A 1902 model which divides the population into several subsets known as 

compartments (e.g., susceptible, infectious, and recovered) (Solís et al., 2021) called the 

SIR epidemic model, was devised in order to describe the spread of an epidemic in a 

given population (Arino and Portet, 2020) This model has been used to graph 

asymmetrical patterns in the modeling of the spread of coronavirus (Telles et al., 2021) 
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and to design  time-based data from the daily spread of new cases, in order to track the 

variables that cause COVID-19 transmission. Further, mathematical models have been 

modified to analyze the dynamics of infection transmission (Ala’raj et al,. 2021; Das and 

Samanta, 2021). 

The spread of COVID-19 is influenced by the climate of an area, with those located in 

hotter and in colder areas in tropical climates being more vulnerable to exposure. High 

temperatures and humidity significantly reduce the likelihood of viral transmission, 

which means that they can also reduce the spread out of COVID-19 (Hattaf, and Yousfi, 

2020; Zhao et al., 2020; Chen et al., 2020). The COVID-19 pandemic has placed a 

serious load on the global health system, putting medical practitioners under immense 

pressure (Afifi et al., 2021; López and Rodó, 2021). Humanitarian rescue is an important 

part of a government’s emergency response management. This has forced mathematical 

scientists to focus on finding mathematical models that can be used for predictions, in 

order to help determine government policies (Deng and Kong, 2021). 

Mathematical scientists began this process by conducting research in order to understand 

the characteristics of the pandemic before constructing a mathematical formulation. Next, 

the generalized logistic model have also been used to illustrate the outbreak of the 

COVID-19 pandemic (Wu et al., 2020). Mathematical models have a role in analyzing 

epidemic phenomena in the health field, in order to determine the level of viral spread for 

infectious diseases (Rosyada et al., 2019; Das and Shaikh, 2021; Sutimin, 2017; Sutimin, 

2019; Alade, 2021). Mathematical equations can also be used to determine the 

effectiveness of treatments, when it comes to preventing outbreaks from developing and 

stopping the spread of a virus (Cullenbine et al,. 2021). 

The local and global stability of the equilibrium point of the model have previously been 

discussed. Local, asymptotic stability of a non-endemic equilibrium is reached if the 

basic reproduction number is less than one. Global stability of an endemic equilibrium in 

the SLBS model can be achieved if the ratio is greater than one (Khasanah, 2019). The 

basic reproduction number is a sharp beginning parameter, which determines the global 

dynamics (Liu and Yang, 2012). 

Then, mathematical models using a common susceptible–infectious–recovered (SIR) 

approach to analyze epidemics of COVID-19 transmission have been published by 

Bärwolff (2020) and Ajbar, et al (2021) have proposed the dynamical modeling of  

COVID-19 spread by using SIR model with linear incidence rate, nonlinear removal rate, 

and public awareness.  Therefore, the environment has a role important in the spread and 

cure/death rate of a disease. Factors inhibiting the detection of a symptom include being 

vulnerable and asymptomatic, being without symptoms and infected, and being infected 

and recovering/dying (Signes-Pont, 2021). Studies investigating appropriate 

mathematical models using the model of Suspected, Infected, and Removed (SIR) and 

Suspected, Exposed, Infected and Removed (SEIR). The SEIR model is developed by 

modifying the SIR model that has been previously used (Erandi et al., 2020). 

Further, Din and Algehyneb (2021) have published the local and global stability analysis 

of the SIR model with the convex incidence rate. The Lyapunov method is implemented 

to analysis of the global of the developed model, whereas the local stability is analysis by 

using Routh-Hurtwitz criteria. Martínez (Martínez, 2021) modified the SIR model by 

adding the “deceased” variable, thus creating the SIRD model (Zewdie and  Gakkhar, 

2020). This model is constructed by using a system of non-linear differential equations to 

detect trends in the pandemic and make appropriate predictions about the spread of 

COVID-19 infection. Developed compartments model for COVID-19 epidemic with 

SEIRV model (Yang and Wang, 2020) and SEIHR model (Rahman et al., 2021) and 

various studies on COVID-19 spread have been published by several researchers 

(Ndaïrou, 2020; Radha and Balamuralitharan, 2020; Serhan and Labbardi, 2021; 

Sugiyanto and Abrori, 2020). Mathematical modeling is used to estimate the reproduction 
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number that can help to determine the potential and severity of the outbreak, as well as 

providing important information to identify the type of interventions and disease intensity 

(Tang et al., 2020). 

Furthermore, a strategy is needed, in order to anticipate an increase in cases, to inhibit 

their growth, and slow or stop the spread of the virus. Thus, obtaining projections of 

future conditions is very important, as it can help to identify which policies are 

appropriate to implement. The dynamical system model approach is very important for 

predicting the future conditions of simulated results as well as selectable scenarios. 

Analyzing the interaction between variables and examining the most influential variables 

can help to determine the sensitivity of the related parameters. The goal of this paper is to 

develop a mathematical model which considers exposed persons and patients un-der 

surveillance in quarantine in the variables, also progression rate from quarantined 

individuals to infected individuals, the transmission of Covid-19 that can occur through 

exposed and infected individuals in the parameters, as well as to evaluate and analyze the 

stability of the proposed dynamical model. This analysis is conducted to investigate the 

behaviour of the system around non-endemic and endemic equilibrium points. We discuss 

the relationship between the basic reproduction number and stability, and the center 

manifold method is used to show that forward bifurcation occurs when the basic 

reproduction number equals unity. 

In this paper, significant novelties have been considered in this new work, which are 

explained as follows. The new model proposed in this article is a development of the 

SEIR model, i.e., accommodates a transfer from Q to I. This describes the reality more 

precisely since after self-isolating, some people became infected by covid-19, and hence 

in this case there is an additional parameter (transfer rate from quarantined individuals to 

infected individuals). In addition, the new proposed model also considers the 

transmission of Covid-19 that occurs through exposed individuals (individuals who have 

had contact with pathogen) and infected individual so that there are two more additional 

parameters i.e. the infection rate which was determined through infected individuals and 

the proportion of infected individuals who transmitted to susceptible individuals (S) so 

that they become exposed individuals. Therefore, from two points above, there are new 

information and parameters involved in our new proposed model so that it becomes the 

novelty in this study. 

This paper is structured as follows: In the introduction, we describe the scientific 

background, importance, and objectives of this research. The mathematical model of 

coronavirus disease spread, positivity, the boundedness of solutions, and the basic re-

production number are discussed in the second section. In the third section, we calculate 

the equilibrium points and examine the existence and uniqueness of the endemic 

equilibrium. An analysis of the stability results is provided in the fourth section. In the 

fifth section, a numerical simulation based on data from Indonesia, is utilized to verify 

the proposed dynamical model. Finally, a summary of the main findings is given in the 

Conclusion section. 

 

2. Methodology 

The methods of the research can be separated into dynamical model formulation, sensitivity 

analysis of parameter, stability analysis of the model, laboratory experiment, and 

computational simulation. The research method steps can be described as follows 

2.1 Developed Mathematical Model 

The novel model was constructed by considering the role of exposed persons and patients 

under surveillance in quarantine in the COVID-19 infection spread model. In the model, 

virus transmission occurs through interaction between exposed and healthy individuals, as 

well as between infected individuals and healthy individuals. We assume that quarantined 
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persons cannot transmit the virus to healthy persons. We divide the human population into 

five categories, based on their health status: susceptible individuals (S), exposed individuals 

(E), patients under surveillance in quarantine (Q), infected individuals (I), and recovered 

individuals I. Hence, the total human population at time t is represented by N(t) = S(t) + 

E(t) + Q(t) + I(t) + R(t). The notations and descriptions of the parameters for mathematical 

modelling are given in Table 1. 

Table 1 Descriptions of parameters. 

Symbol Descriptions 

𝜆 Recruitment rate of susceptible individuals 

 Infection rate determined through exposed individuals 

 Infection rate which determined through infected individuals 

𝑟 Proportion of susceptible individuals who become exposed individuals 

𝜅 Progression rate from exposed individuals 

 Proportion of exposed individuals who become   susceptible 

individuals 
 Proportion of exposed individuals who become infected individuals 

 Recovery rate of quarantined individuals 

 Recovery rate of infected individuals 

 Death rate due to infection 

𝜏 Natural death rate 

𝜔 Proportion of infected individuals who can transmit to susceptible 

individuals (S) so that S become exposed individuals 
𝛿 Progression rate from quarantined individuals to infected individuals 

The schematic model of COVID-19 infection in the community is given in Figure 1 

where the notations used in the model are described in Table 1. The susceptible 

population is generated by recruitment through births, at a constant rate. 

 

Figure 1. The Compartmental Model Of COVID-19 Infection Spread 

The compartmental model is stratified, based on infection status, as the following 

categories: “Susceptible” represents an individual who is able to become infected; 

“exposed individuals” is an individual who has had contact with a pathogen, 

“quarantined” is an individual who is under surveillance in quarantine, and “infected” is 

an individual who is infected by a pathogen and is capable of transmitting the virus to 

others. Finally, “recovered” represents an individual who was previously infected and 

survived the virus with no long-term health effects. The dynamics of each compartment, 
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which were used to formulate the differential equations describing the Covid-19 

transmission, are described as follows: 

1. Changes in the susceptible individuals (S) cover: (1) increment due to the natural 

birth rate of λ, (2) decrement due to infections from direct interactions between 

vulnerable individuals and COVID-19 carriers, and move to individuals E and Q with 

rates β1r + β2ω and β1(1 − r) + β2(1 − ω) respectively, (3) decrement due to natural 

death by 𝜏. The dynamics of S are then formulated as the differential equation (1). 

2. The number of individuals in the subpopulation E increased due to the interaction 

between susceptible individuals and COVID-19 carriers, causing an E and I with rate 𝛽1𝑟 

and β2ω respectively. Individuals in E who returned to the individuals susceptible 

represented by the rate 𝜅𝜌1, while those who entered the infected individuals represented 

by the rate 𝜅𝜌2. Furthermore, it decreased due to the rate of development from E to Q of 

(1−𝜌1−𝜌2). Finally, there is a natural death of 𝜏. The dynamics of the exposed individuals 

E are then formulated as the differential equation (2). 

3. Changes in the number of the quarantined individuals Q cover: (1) increment due 

to the rate of development of E and susceptible individuals to Q by the rate of (1−𝜌1−𝜌2) 

and β1(1 − r)respectively (2) decrement due to recovery with the rate of 𝛾1 (3) 

decrement due to deaths caused by COVID-19 with the rate of 𝜇 (4) decrement due to 

natural death with the rate of 𝜇. This is modelled as the differential equation (3). 

4. The number of individuals in the positive individuals infected by COVID-19 

increased due to the rate of development from the E class to positive individuals at the 

rate of 𝜅𝜌2. The infected individuals by COVID-19 decreased due to the rate of change of 

infected individuals to recover by 𝛾2, and the death rate due to COVID-19 and natural 

deaths with the rate of 𝜇 and 𝜏 respectively. This is modelled as the differential equation 

(4).   

5. The number of the recovered individuals increased by population transmissions 

from Q and I with the rate of 𝛾1 and 𝛾2 respectively, and reduced due to natural deaths by 

𝜏. Hence, the rate of changes in the number of individuals in the recovered individuals is 

represented by the differential equation modelled as the equation (5). 

Based on the dynamics described above, the proposed mathematical model for the spread 

of COVID-19 infection in the community consists of five-variable non-linear differential 

equations (comprising the SEQIR model), as follows: 

( )1 1 2

dS
SE S E I S

dt
    = + − − +  

(1) 

1 2 1

dE
rSE SI A E

dt
  = + −  

(2) 

( ) ( ) ( )1 2 1 2 21 1 1
dQ

r SE SI E A Q
dt

     = − + − + − − −  
(3) 

2 3

dI
E Q A I

dt
 = + −  

(4) 

1 1

dR
Q I R

dt
  = + −  

(5) 

where 
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1

2 1

3 2

A

A

A

 

   

  

= +

= + + +

= + +

 

with the initial condition ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0, 0S E Q I R     . 

2.2 Sensitivity analysis of parameter and stability analysis of the model  

In this step, we investigated a sensitivity analysis was carried out to determine the 

parameters that most influence changes in the basic reproduction number. Next, the 

stability analysis at the equilibrium point.  it will be analyzed using the Routh–Hurwitz 

method to analyze the stability of the non-endemic equilibrium, and manifold center 

theory is used to analyze the stability of the endemic equilibrium. 

2.3 Laboratory experiment and numerical simulations 

The data for the simulations is obtained from https://covid19.go.id, on 12 July to 16 

August 2021.  The parameters are estimated from laboratory experiment analysis by 

using the nonlinear least-square method with MAPLE software. While, Solving the 

system equation, numerically using a 4th order Runge-Kutta method is studied 

numerically with MATLAB software. 

 

3. Results and Discussion. 

In this section, we proposed results and discussion of this research. First, we describe the 

investigation of several analytical properties to the dynamics of COVID-19 spread. The 

properties of the dynamical model such as Positivity and Boundedness of Solutions, a 

uniqueness endemic equilibrium, and stability analysis that are given in the following 

theorem. 

3.1 Positivity and Boundedness of Solutions 

This model is a transmission model of COVID-19 in a closed population (N), divided into 

five categories: susceptible (S), exposed (E), quarantined (Q), infected (I), and recovered 

(R). Thus, it is very important to prove that all the variables are positive at all times, 

0t   

Theorem 1. Suppose initial conditions S (0) ≥ 0, E(0) ≥ 0, Q(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, 

then the solutions for model (1)-(5) are positive for all time 0t  : 

Proof of Theorem 1Consider the initial condition, For 0t  , from dS

dt
 in equation (1), we 

have  

( )

( )

( )

1 1 2

1 2 1

1 2 1

dS
SE S E I S

dt

dS
E I E S

dt

dS
E I E S

dt

    

    

    

= + − − +

= − + + −

+ + + − =

 

The above equation can be written as follows 

( )
( )

dS t
qS t

dt
+ = , where 1 2 1q E I E   = + + −  

By using integrating factor method, we find 
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( )
( )

( )

0 0 0

0 0

t t t

t t

q d q d q d

q d q d

dS t
e qS t e e

dt

d
S t e e

dt

  

 





  
+ =

 
   =

 
 
 

g g

g

 

Hence, we obtain 

( ) ( )

( ) ( )

0 0

0 0 0

0

0

0

0 0,

0

t t

t t t

tq d q d

tq d q d q d

S t e S e dt

S t S e e e dt

t

 

  




− −

 
− =

 
   

= +  
 
 

 




 

In a similar way, it can be proved that E(t) ≥ 0, Q(t) ≥ 0, I(t) ≥ 0, and R(t) ≥ 0. Thus, the 

solution of S (t), E(t), Q(t), I(t), and R(t) of model (1)-(5) are positive for all time 

t > 0. ∎ 

Theorem 2. The feasible region defined by Ω = {(S(t), E(t), Q(t), I (t), R(t))  ∈ ℝ+
5 : 0 ≤

N(t) ≤ U}with  U = max {N(0),
λ

τ
}, is positively invariant for models (1)-(5). 

Proof. Let ( ) ( ) ( ) ( ) ( ) ( )N t S t E t Q t I t R t= + + + +  

From models (1)-(5), we have 

dN dS dE dQ dI dR

dt dt dt dt dt dt
= + + + +                                              (6) 

( )1N Q N    = − − −  −                                          (7) 

That is,  

dN
N

dt
  −     (8) 

By integrating inequality (8) using initial condition ( )0N  representing the total 

population at 0t = we find 

( ) ( )0 t tN t N e e  

 

− − − +       (9) 

Letting t  tend to infinity, we obtain. ( )N t



  

Therefore, Ω is positively invariant for models (1)-(5), it indicates that all feasible 

solutions of models (1)-(5) belong to the region Ω. ∎ 

3.2 Basic Reproduction Number 

In this subsection, we derive a basic reproduction number 0 . The number 0 is a 

measure to determine the rate of spread of COVID-19 in a population. 0  is defined as 

the average number of new cases of infection caused by an infected individual in a 
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susceptible sub-population. As we know the basic reproduction number 0 in the 

epidemic model, if 0 1  , then the disease does not proliferate in the population. 

Conversely, if 0 1  , then infection will spread among the population (Yang and Wang, 

2020). 

Next, the number 0 is derived from the next-generation matrix (NGM), in order to find 

the dominant eigenvalues of the Jacobian matrix calculated at the non-endemic 

equilibrium point. The infected compartments are E and I . Suppose  ,
T

x E I= , such 

that we can write 

( ) ( )
dx

F x V x
dt

= −  (10) 

( ) 1 1 2

2 0

F rSE SI
F x

F

  +   
= =   

  
 (11) 

( ) 11

2 32

A EV
V x

E Q A IV  

  
= =   

− − +   
 (12) 

1 1

1 2

2 2 0 0

F F

rS SE I
F

F F

E I

  
  

    
= =   

    
 
  

 (13) 

1 1

1

2 32 2

0

V V

AE I
V

AV V

E I



  
    

= =   
−    

 
  

 (14) 

F and V  are Jacobian matrices of ( )F x and ( )V x  at the non-endemic equilibrium 

point. By substituting the non-endemic equilibrium value, 

( )0 0 0 0 0 0, , , , ,0,0,0,0S E Q I R





 
=  
 

 at  F and V matrices, we obtain 

1 2

0 0

r
F

 
  

 

    
    

=     
 
 

 and 
1

2

1 3 3

1
0

1

A
V

A A A



 
 
 =
 −
 
 

   (15) 

The reproduction number 0 for the COVID-19 dynamical models (1)-(5) can be 

calculated from the spectral radius of ( ) ( ) ( )1 1,FV NGM FV − −=  (FV^(-

1)),ρ(NGM) = ρ(FV^(-1)), obtained as follows: 

1 2 1
0

1 1 3

r

A A A

   


 = +       (16) 
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3.3 Sensitivity Analysis of Parameters 

The idea of sensitivity can be applied to infectious disease models to decide which 

variable or parameter is sensitive to a particular situation. The effects of changing 

parameter values on the functional value of the reproduction number 0 are obtainable in 

this section. The essential parameter must be found, which could be an important 

threshold for disease management. The sensitivity index of 0 with respect to the given 

parameters is given by 

 

The normalized sensitivity indices for 16 parameters are obtained as 

 

 

 

 

 

  

 

 

0 0

0

R R

R








=

1 2 1

0 1 1 3

1 2 10

1 1 3

1

r

R A A A

rR

A A A

   



   



+


=

+

=

0 1

0 1 2 1
1

1 1 3

1 3

2 1 1 3

R rr

R r r
A

A A A

A

r A

 

   






   


=
 

+ 
 

=
+

01 1

0 1 1 2 1
1

1 1 3

1 3

2 1 1 3

R r

R r
A

A A A

rA

rA

  

    






  


=
 

+ 
 

=
+

0 2 1

0 1 2 1
1 3

1 1 3

2 1

2 1 1 3

R

R r
A A

A A A

r A

 

    



 

  


=
 

+ 
 

=
+

02 2 1

0 2 1 2 1
1 3

1 1 3

2 1

2 1 1 3

R

R r
A A

A A A

r A

  

    



 

  


=
 

+ 
 

=
+

01 2 1

0 1 1 2 1
1 3

1 1 3

2 1

2 1 1 3

R

R r
A A

A A A

r A

  

    



 

  


=
 

+ 
 

=
+

( )
( )

2

2 1 1 30

0 1 2 1 1 3

r AR

R A r A

   

   

− +
= −

+
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3.4 Equilibrium Points of The Model  

By solving the system of equations 0, 0, 0, 0 0
dS dE dQ dI dR

dt dt dt dt dt

 
= = = = = 

 
, we derive 

non-endemic and endemic equilibrium points for system (1)-(5). The non-endemic 

equilibrium points can be written as ( )0 0 0 0 0 0, , , , ,0,0,0,0S E Q I R





 
=  
 

, and the 

endemic equilibrium points are  * * * *

1 , , ,S E Q I =  where 

( )

( ) ( )
*

*

1 1 11

S
E

r S A

  

  

−
=

− + − +
,  (17) 

( )( )
( )

* * *

2 2 3 1 1 3*

* * *

1 1 1 1 2

S S A S r A A
Q

S S A S

    

   

− − − +
=

− − +
 

(18) 

( )( )
( )( )

*

1 1*

* *

1 1 1 2

S S r A
I

r S A S

  

   

− −
=

− − +
 

(19) 

The solution of S* satisfies the polynomial equation 

( )
2

* *

2 1 0 0a S a S a+ + =
 

(20) 

with 

( )2 1 2 ,a r r   = −   (21) 

( )( ) ( ) ( )( )( )2 3 1 2 1 2 1 21 1 ω δ ρ κω τ 1 ω ρ δ ρ ω γ μ κ βa A A r + − + + − + +=
  
(22) 

( )
( )

0 1 2 3

2 2

1 2 3
0

2 2 13 1

1

a A A A

A A

rA A

A 

    −

=

= −
+

 

 

(23) 

( )

( )

02 2 2 1

20 2 1 2 1
1 3

1 1 3

2 2 1

3 2 1 1 3

R

R r
A A

A A A

A r A

   

    



  

  


= −

 
+ 

 

= −
+

( )

( )

0 2 1

20 1 2 1
1 3

1 1 3

2 1

3 2 1 1 3

R

R r
A A

A A A

A r A

 

    



 

  


= −

 
+ 

 

= −
+

( ) ( ) ( )

( ) ( )

( )

1 1 2 1 2 1
2 12 2 22

1 1 1 3 1 30

1 2 10

1 1 3

2 22

1 2 1 3 2 1 1 3 1 3 1

1 3 2 1 1 3

r r

A A A A A AR

rR

A A A

A A A A r A r

A A r A

       
  

 

   



      

  

 
− − − − 
   =

+

+ + +
= −

+
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Based on Descartes’s rule of signs  a2 > 0, a1 < 0 must be satisfied for positive S∗. The 

existence and uniqueness of the endemic equilibrium is given in the following theorem.  

Theorem 3. If 0 1  , with 1 2 1
0

1 1 3

r

A A A

   


 = + , then there is a unique endemic 

equilibrium  * * * *

1 , , ,S E Q I = for equations (1)-(5).  

Proof of Theorem 3. From Equations (21), (22), and (23), we can find that the value 2 0a 

, based on Descartes’ rule of signs: it must satisfy 0 0a   for S* to be conditional. As is 

well-known, 

( )
0 1 2 3

01

a A A A

k

=

= −
 

 

where 
( )

2 2

1 2 3

2 2 3 11

A A A
k

A Ar



    +
=

−

 

If 0k  , then ( )0 01 0 1−     such that there is a unique endemic equilibrium. ∎ 

3.5 Stability Analysis Results  

Next, we analyze the stability of the equilibrium points. Stability analysis is used to 

determine the behavior of the population around the equilibrium point. The local stability 

of the non-endemic equilibrium point is given in Theorem 4. 

Theorem 4. Let 1 2 1
0

1 1 3

r

A A A

   


 = + . 

i.) If 0 1  then the non-endemic equilibrium point will be locally asymptotically 

stable; and  

ii.) If 0 1  , then the non-endemic equilibrium point will be unstable. 

Proof. The Jacobian matrix associated to the non-endemic equilibrium point ℇ0, J(ℇ0), is 

represented as 

( )
( )

( )
( )

1 2
1

1 2
1

0

1 2

1 2 2

2 3

0

0 0

1 1
0 1

0

A
J

r r
A

A

   
 

 

   

 

   
  

 

 

 
− − − 
 
 −
 =
 

− − + − − −
 
 

− 

 

 

(24) 

The stability at the non-endemic equilibrium point for COVID-19 can be analyzed using 

the eigenvalues obtained from the Jacobian matrix (J(ℇ0)). According to the Routh–

Hurwitz criterion, if all real parts of the eigenvalues are negative, then ℇ0 is locally 

asymptotically stable. Next, we find the eigenvalues of the Jacobian matrix, by 

calculating 
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( )
( )

( )

1 2
1

1 2
1

1 2

1 2 2

2 3

0

0 0

1 1
0 1

0

X

X A

r r
X A

X A

   
 

 

   

 

   
  

 

 

 
+ − + 

 
  

− − −   
 

− −  
− + − − + −  
  

 − − + 

 
(25) 

The characteristic equation of the Jacobian matrix at J(ℇ0) is an equation in the form of 

polynomial factors: 

 ( ) ( )( )3 2

0 1 2 3

1
p X X a X a X a X a


= + + + +  (26) 

where 

2

0 0a =  , (27) 

( ) 2

1 1 1 2 3a r A A A  = − + + + , (28) 

( )
( )( )2

2 2 2 3 3
2

2 1 0

3

1
A A A

a A
A

     


+ +
= − +

, 

(29) 

( ) ( )( )( )2

3 1 2 1 2 1 2a r A              = − + + −
 

( )( ) 2

2 3 1 2 1 2 3 2 1r A A A A A           + − − + + +
 

(30) 

Note that Hurwitz's matrix is as follows: 

( )
1 3

0 2

1 3

0

0

0

a a

H p a a

a a

 
 

=  
 
 

 

From the matrix ( )H p , we obtain Hurwitz's determinant 

( )

( )

( )

( )

( )

1 1 1

1 3

2 1 2 3 0

0 2

1 3

3 0 2

1 3

1 2 3 3 3 0 3 1 2 3 0

3 2

0

0

0

p a a

a a
p a a a a

a a

a a

p a a

a a

a a a a a a a a a a a

a p

 = =

 = = −

 =

= − = −

= 

 

In order for all polynomial roots to have a negative real root part, the following must be 

satisfied 
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( )

( )

( ) ( )

1 1

2 1 2 3 0

3 3 1 2 3 0

0 0,

0 0,

0 0,

p a

p a a a a

p a a a a a

   

   − 

   − 

     (31) 

From equation (27), 1 0a  so we have 

2
2

0

3
3

0

0 0

0 0

a
a

a

a
a

a

  

  

 

From Equation (26), we obtain the eigenvalue 1X = − . Based on the Routh–Hurwitz 

criterion, if the cubic degree polynomial satisfies 1 20, 0a a  and 1 2 3 0a a a a , then the 

polynomial has roots with negative real part. From Equation (29), it can be seen that 

2 0a  is fulfilled if ( )01 0−  , such that 0 1  . This proves that the non-endemic 

equilibrium point, ( )0 0 0 0 0

0 , , , ,S E Q I H = is locally asymptotically stable if 0 1 

and unstable if  0 1  . ∎ 

An infectious disease analysis in the epidemiological model use basic reproduction 

number ( )0  (Ajbar et al., 2021; Martínez, 2021; Zewdie and Gakkhar, 2020). This 

number is important to determine whether the disease will disappear or remain in the  

population as time increases. If 0 1  , it indicates that one infected individual can 

infect more than one susceptible individual. This implies that the non-endemic 

equilibrium is unstable which results in an epidemic breaks out. 

Theorem 5. Let 1 2 1
0

1 1 3

r

A A A

   


 = + . The endemic equilibrium state

 * * * *

1 , , ,S E Q I =  is stable if 0 1   and unstable if 0 1  . 

Proof. Stability analysis of the endemic equilibrium point for the case 0 1  can be 

carried out using center manifold theory. We suppose that the equilibrium point of the 

system is around the bifurcation point when 0 1 = . Selecting 2  as the bifurcation 

parameter from the formula of 0 , as 
*

2 2 = , it can be found that 

( )1 1 3*

2

2

r A A  




− +
=  

The Jacobian matrix for the system at the non-endemic equilibrium point when 
*

2 2 =  

is given as follows: 

( )

( )

( )

( )
( )

( ) ( )

1 1 31
1

2

1 1 31
1*

0 2 2

1 1 1 3

1 2 2

2

2 3

0

0 0
,

1 1
0 1

0

r A A

r A A
A

J

r r A A
A

A

   
 

  

   

    

     
  

  

 

 − + 
− − − 
 
 − +

− 
=  
 − − + −
 + − − −
 
 

− 
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The matrix ( )*

0 2,J    has eigenvalues such that right eigenvector corresponding to these 

eigenvalues can be denoted by  1 2 3 4

T
w w w w w= , satisfying ( )*

0 2, 0J w   = , 

where 

( )1 1 1

1 2

κωτρ λωβ λ β 1τ

ωτ

r A
w

− + − +
=

, 
 

2 1w = ,  

( ) ( ) ( )( )1 2 1

3

κωτ ρ ρ ωτ 1 κ λβ ω 1τ

2ωτ

A r A
w

A

+ − − −+ −
=

, 
 

( )1

4

2

λ β 1τ

λωβ

r A
w

− +
=

. 
 

Then, v  , which is the left eigenvector, is denoted by  1 2 3 4

T
v v v v v= , satisfying 

( )*

0 2, 0v J   =  with  

1 0v =
,  

( )( )
( )

2

2

2 1 1

1

( 1

τ

2κτ 1ρ δκτ ρ ρ δλ) β

δ λ β 1

r
v

A

r A

− + −
=

−

− +

−

, 

 

3 1v = ,  

2
4

A
v


=

. 
 

Let 1 2 3 4, , ,S h E h Q h I h= = = = , and we obtain 

( )
24

0

, , 1

k
k i j

k i j i j

f
a v w w

h h


=


=

 
 ,  

( ) ( )

( ) ( )

2 2

2 2
2 1 2 0 2 1 4 0

1 2 1 4

2 2

3 3
3 1 2 0 3 1 4 0

1 2 1 4

2
f f

a v w w v w w
h h h h

f f
v w w v w w

h h h h

 

 

  
= +

   

 
+ + 

    

 
 

  

We have 

( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )
( )

2 2 2

1 1 1 1 2 2 1 2 1 1 1 1

2 2

1 1

2 1 1 1 2r A A A A r A r
a

A r

                  

     

− + + − − + + − − + − −
= −

−

, 

with r   

Furthermore, we find 

( )
24

0*
, , 1 2

k
k i

k i j i

f
b v w

h


=


=


 ,  

( ) ( ) ( ) ( )
2 22 2

3 32 2
2 1 0 2 4 0 3 1 0 3 4 0* * * *

1 2 4 2 1 2 4 2

f ff f
b v w v w v w v w

h h h h
   

   

  
= + + +

       
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( )( ) ( ) ( )1 2 2 2 1 1

2 2 2

1 1A A r
b

        

     

− − + − −
= + +

 
 

We find that 0a  and 0b  . This indicates that the dynamical model will have a 

forward bifurcation (Wang et al., 2021) at 0 1 = , that is, there is a change in stability 

where the non-endemic equilibrium point becomes unstable. The endemic equilibrium 

point is thus stable when 0 1  , and the endemic equilibrium point is unstable if 

0 1  . ∎   

So that, the proposed model has an endemic equilibrium point and the forward 

bifurcation occurs. From Theorem 4, it can be seen that, if the basic reproduction number 

is more than one, then the endemic equilibrium point is stable, meaning that infected 

individuals will transmit the disease to more than one individual, and the virus will persist 

in the population 

3.6 Simulation Results  

In this section, we demonstrate a numerical experiment to verify the proposed dynamical 

COVID-19 transmission model with case study di Indonesia. We estimated important 

model parameters based on data from Indonesia, on 12 July to 16 August 2021. To 

estimate the parameters involved in the model, we used the nonlinear least-square 

method, which is a well-known method (see e.g. (Cao et al., 2012) for more detailed 

basic theory). This works by fitting the parameters from the solution of models (1) – (5) 

to the observation data, and the estimated parameters derived by minimizing the least-

square error, which are shown in Table 2. 

Table 2 Parameter estimation for Indonesia 

Parameters Value Unit 

  3.94 day-1 

1  3.604 × 10−8 day-1 

2  0.195 day-1 

r  6.5 × 10−3 - 

  0.5944 day-1 

1  0.622 × 10−6 - 

2  1.3822 × 10−18 - 

1  1.0541 × 10−5 day-1 

2  1.969 × 10−1 day-1 

  0.0999 day-1 

  3.849 × 10−10 day-1 

  0.8192 - 

  1.835 × 10−2 day-1 

To illustrate endemic simulations, we used this parameter values and initial conditions as 

follows: ( ) ( ) ( ) ( ) ( )0 170101; 0 123317; 0 4782; 0 40427; 0 34754S E Q I R= = = = =  
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The value of 0   is determined using the parameters that are estimated in Table 1, we 

find 0 4.0438 1 =  . Numerical simulation of the SEQIR model for COVID-19 spread 

to determine the effect of variation in infection rate of the dynamical behavior of the 

number Exposed, Quarantined, and Infected individuals are demonstrated by using 

MATLAB R2019b package as in Figure 3-6. 

 

Figure 3 Effect of the variations in  
2 values on the number of Exposed Individuals 

 

Figure 4 Effect of the variations in 
2  values on the number of Quarantined individuals 

According to Figure 3, the number of Exposed individuals decreases for 
2 0.7 = on the 

seven days, it decreased to 55600 people, meanwhile for 
2 0.1 = , it decreased to 41500 

people. At Figure 4, the number of Quarantined individuals increases and only takes nine 

days to reach a peak of 308.700 people for 
2 0.7 = , but for 

2 0.1 = just reach 219.400 

people. 

Corresponding to this, it can be seen that from Figure 5, the number of Infected 

individuals decreased on the nine days reaching 190.800 people for 
2 0.7 = and for 

2 0.1 =    just reach 140.600 people so that if the 
2 value is higher, then the number of 

Infected individuals will also be higher, as well as Exposed individuals. 
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Figure 5 Effect of the variations in  
2 values on the number of Infected individuals 

Based on figure 3-5 with variation of rate infection, the number of Quarantined 

individuals increases, but the number of Traced and Infected individuals have decreases. 

So that quarantine is very necessary to reduce COVID-19 transmission. Furthermore, we 

depicted the model of the transmission of COVID-19 as shown in Figure 6.   

 

Figure 6 Endemic model simulation ( )0 1   

From Figure 6, it can be seen that the outbreak will disappear if the sizes of the T, and I 

compartment decrease, while Q compartment increases. The size of the recovered 

category increases. We know that the susceptible category is growing smaller with time, 

which means there are many people who have come into contact with infected individuals 

and, thus, become exposed individuals, meaning that the expose and quarantine category 

is growing. This indicates that there are infected people who transmit the virus to more 

than one other person in the given period. Therefore, there is a large number of infected 

people over time, which can lead to an outbreak in a very short time, 0 4.0438 = . 

Next, we will analyze the parameters that have the most influence on the rate of spread of 

the COVID-19 disease. We evaluated the sensitivity index of the basic reproduction 

number on the values of the basic parameters given in Table 2. The results of the 

sensitivity index 0  for the estimated parameters are given in Table 3. 

Table 3. The sensitivity index of parameter 

Parameter Sensitivity indices of 0  

 

 

  

  

 1

r 0.999

1 0.999
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The parameters 
1 2 1, , , , ,r      are parameters with positive indices that contribute to 

endemic dispersion, because they increase 
0 . Vice versa, a parameter with a negative 

index contributes to controlling the disease because they have reduced reproduction 

number. 

 

4. Conclusions 

We have modified dynamical model for the COVID-19 outbreak. The proposed model 

was constructed by dividing the human population into susceptible, exposed, quarantined, 

infected and recovered compartments with considering progression rates from 

quarantined to infected individuals and the transmission of Covid-19 that can occur 

through exposed and infected individuals in the population. Results showed that the 

related basic reproduction number became the unique threshold to guarantee the existence 

of COVID-19.  Analytically, it was proven that the spread of COVID-19 infection 

depends on the basic reproduction number, which can be used to investigate the stability 

of the model at the equilibrium point. Further, the center manifold theorem has been 

implemented to analyze the forward bifurcation at the reproduction number equals to 

unity.  If the basic reproduction number is less than unity, the situation is thought to be 

under control and COVID-19 cannot persist in the population. Thus, we can reduce the 

spread of COVID-19 by reducing the basic reproduction number to less than one.  From 

the formula of reproduction number, it shows that the infection rate, which was 

determined through infected individuals and the proportion of infected individuals who 

can transmit to susceptible individuals, was directly proportional to the reproduction 

number. Hence, decreasing these parameters will reduce the reproduction number. 

Furthermore, we estimated the parameter values based on data from Indonesia, and a 

numerical simulation was conducted. We found 0 4.0438 = for an endemic situation. 

This indicates that mathematical modelling is an efficient method to estimate this kind of 

pandemic situation, if the parameters can be properly estimated. From the simulation 

results, we also derived that with the variation of infection rate parameters, the number of 

traced and infected individuals decreased, while the number of quarantined individuals 

increased. Hence, quarantine is one effective strategy to reduce the COVID-19 spread. 

In future research, the dynamical model needs to be further developed. Modification of 

the mathematical model can be carried out by considering the optimal COVID-19 spread 

control model and assessing the impact of control strategies that can reduce the number 

of exposed individuals, patients under surveillance in quarantine, and infected individuals 

in the population.  

 

 

2
73.269 10−

 73.269 10−

1
73.269 10−

 0.999−

2
72.169 10−− 

 71.1 10−− 

 0.999−
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