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Abstract 

The emergence of 6G mobile communication networks has led to a growing demand 

for sustainable energy solutions. This technical research paper investigates the energy 

consumption challenges faced by 6G networks that rely on battery-powered devices. 

The limited battery capacity of these devices poses a challenge in terms of reducing 

energy consumption and extending network lifetime. Our research aims to identify 

the optimal nodes for data transmission in order to minimize energy consumption 

and maximize network lifetime in 6G networks. Furthermore, we take into account the 

societal responsibility of minimizing the environmental impact caused by the carbon 

footprint of information and communication technology by implementing strategies 

to reduce power consumption in 6G networks. In the proposed multi-objective 

optimization algorithm, we are trying to minimize the power transmitted as well as 

maximize the time to run. The results show an accuracy of up to 98.48%, a  

sensitivity of 84%, and a  specificity of 99.2%. The optimization of energy 

consumption in 6G mobile communication networks has important implications for 

both reducing costs and extending network lifetime, while also contributing to 

reducing the ecological impact of technology on society 

 

Keywords: 6G networks, Energy consumption, Network lifetime, multi-objective 

optimization, AI. 

 

1  Introduction 

The deployment of 5G wireless networks brings about a new era of digital society, 

with notable advancements in latency, data rates, mobility, and the number of 

connected devices compared to previous generations Giordani et al (2020). However, 

the increase in wireless data traffic volume and the sheer number of connected devices 

is projected to skyrocket in the coming years. Additionally, the demand for data-

intensive applications such as holographic video transmission requires a spectrum 

bandwidth that is currently unavailable in the millimeter-wave spectrum. This poses 

significant challenges in terms of spatial spectral efficiency and the availability of 

frequency spectrum bands for connectivity. Therefore, the need for a wider radio 

frequency spectrum bandwidth, particularly in the sub-terahertz and terahertz bands, 

has become essential. Viswanathan and Mogensen (2020) This growing demand for 

higher performance and increased connectivity has led to the development of 6G 

networks. 6G is expected to bring significant improvements in information 

transmission, such as peak data rates reaching 1 Tbps and ultra-low latency in 

microseconds. It utilizes terahertz frequency communication and spatial multiplexing, 

resulting in a capacity increase of upto 1000 times compared to 5G networks. Alsabah 

et al (2021) One objective of 6G is to achieve widespread connectivity by integrating 

satellite and underwater communication networks to provide global coverage. 6G 

networks introduce three new service categories, namely, ubiquitous mobile ultra-

broadband (uMUB), ultrahigh-speed low- latency communications (uHSLLC), and 

ultrahigh data density (uHDD) Sheth et  al (2020) . 

To achieve the goal of an intelligent network, the design of 6G architecture should 
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take into account the full potential of Artificial Intelligence (AI) and adopt an AI- 

driven approach where intelligence is integrated throughout the architecture. As the 

network is becoming increasingly complex and diverse due to the growing number 

of connected devices and diverse service requirements, a new AI paradigm is necessary 

Zhang and Zhu (2020). This paradigm, known as self-aware, self-adaptive, self-

interpretive, and prescriptive networking, involves embedding intelligence across the 

entire network and incorporating AI logic into the network structure.  This approach 

enables all network components to connect and control autonomously, and to recognize 

and adapt to unexpected situations. 

Dynamic node allocation is a technique used in 6G networks to optimize the use 

of resources by dynamically allocating network nodes based on current network 

conditions and usage patterns. It involves the continuous monitoring  of network traffic 

and the use of algorithms to determine the most efficient use of resources, such as the 

placement and number of nodes needed to support the current traffic demand Tang 

et al (2021) . The goal of dynamic node allocation is to improve network performance 

by reducing energy consumption, increasing network capacity, and improving the over- 

all user experience. This can be achieved by allocating network resources in real-time, 

based on the changing network conditions, to ensure that the network is always 

operating at peak performance while minimizing the number of resources required to 

support the traffic demand Li and Xu (2020) . 

Battery power depletion is a significant obstacle in fully realizing the capabilities 

of 6G mobile networks. Transmission over long distances can consume a significant 

amount of energy, which greatly reduces the lifetime of the battery-powered nodes. 

To extend the lifetime of the network, it is crucial to minimize energy consumption 

in the nodes of the 6G mobile network. This can be achieved by reducing the energy 

consumed during long-distance radio transmission. 

 

 

Fig. 1: The figure illustrates the concept of using 6G network metadata to optimize 

network performance through the use of a multi-objective optimization algorithm 

(MOOA). The MOOA seeks to balance the minimization of power consumption 

and the maximization of network lifetime with the fastest possible packet 

transmission. The algorithm suggests the most efficient node path for each packet, 

ensuring that both objectives are met simultaneously. By considering all possible node 

combinations and permutations, the MOOA enables the achievement of an optimized 

6G network. 

 

 

Figure 1 depicts the process of optimizing 6G network performance through 

network information obtained from metadata and the implementation of the multi- 

objective optimization algorithm (MOOA) for network optimization in a 6G mobile 

wireless network. The MOOA works by balancing multiple objectives: minimizing 

power consumption and network lifetime while ensuring the fastest possible packet  

transmission. To achieve this balance, the MOOA suggests the most efficient node 

path for each packet, taking into account both power consumption and time required 

for transmission of the packet. The algorithm considers all permutations and 

combinations of nodes to determine the optimal path for each packet. By doing so, the 

MOOA enables the creation of a fully optimized 6G network. 
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2 Related work 

Chowdhury et al. Chowdhury et al (2020) discuss the future possibilities of 6G wireless 

communication and the incorporation of emerging technologies such as AI, terahertz 

communications, and integration of various functionalities to enhance the development 

of 6G architecture and ensure Quality of Service. Huang et al. Huang et al (2019) 

highlight the crucial architectural changes necessary for the development of 6G net- 

works. These modifications are characterized by the implementation of widespread 

3D coverage, the integration of pervasive artificial intelligence, and the enhancement 

of network protocol stacks. Additionally, the authors examine various emerging 

technologies that have the potential to contribute to the establishment of sustainable 

and socially inclusive networks. Letaief et al. Letaief et al (2019) propose that 6G 

networks will go beyond mobile internet and will be required to support ubiquitous AI 

services throughout the network, from the core to the end devices. They argue that 

AI will be a crucial factor in the design, optimization, and operation of 6G networks. 

The authors also present a research roadmap for 6G, identifying new features of the 6G 

evolution and discussing enabling technologies such as big data analytics, intelligent  

wireless communication, and AI-enabled closed-loop optimization. Mao et al. Mao 

et al (2021) suggest that AI-based green communications will be a crucial area of 

focus in 6G networks due to the rapid increase in energy consumption from expanding 

infrastructure and end devices. They argue that traditional heuristic algorithms and 

convex optimizations are limited in their ability to efficiently and effectively address 

energy consumption issues. In contrast, the authors suggest that AI techniques have 

been shown to have significant advantages in tackling complex problems with respect 

to 6G networks. 

Park et al. Park and Lim (2020) propose a  joint  mode-selection  and  power- control 

algorithm that utilizes reinforcement learning to optimize energy usage in vehicle 

networks. The authors develop a problem formulation to maximize system energy 

efficiency subject to constraints on the signal-to-interference-plus-noise ratio (SINR) 

and outage probability. They also design a Q-learning algorithm that optimizes 

transmission-mode-selection and power-control decisions by adjusting the target SINR. 

The overall goal of the work is to achieve energy optimization in vehicle networks. 

Ahmed et al. Al-Quzweeni et al (2019) in their work, have developed a Mixed 

Integer Linear programming (MILP) optimization model with the objective of 

minimizing the total power consumption in a data center. The model optimizes the 

locations of virtual machines (VMs) and the utilization of VM servers to achieve this 

goal. The overall aim of the work is to reduce the energy consumption of the data center 

by optimizing the placement and usage of the VMs and servers. 

Mao et al. Mao et al (2020) in their work, have employed the Extended Kalman 

Filtering (EKF) method to predict future harvesting power for wireless-powered 

communication networks (WPCNs). Based on this prediction, the authors use a 

mathematical model to calculate the energy required for different security strategies 

in each energy-aware cycle. The goal is to identify the security strategy that provides 

the highest level of protection while meeting service requirements and avoiding energy 

exhaustion. The EKF method is used to predict future harvesting power, which is 

a key factor in determining the optimal security strategy for the WPCNs. 

Verma et al. Verma et al (2020) have proposed a novel optimization algorithm 

called the Hybrid Whale Spotted Hyena Optimization (HWSHO) algorithm. This 

algorithm is designed to address the issue of green communication in 6G networks. 

The authors have synthesized the Whale Optimizer Algorithm (WOA) with the 

exploitation capabilities of the Spotted Hyena Optimizer (SHO) to create the HWSHO 

algorithm. The WOA is known for its global search capabilities, while the SHO has 

strong exploitation capabilities. By combining the two, the HWSHO algorithm 

aims to take advantage of the strengths of both to optimize the parameters of the 6G 

net- work, thus improving its energy efficiency. The overall aim of the work is to 

propose a new optimization algorithm for addressing the concern of green 

communication in 6G networks. 
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Sachan et al. Sachan et al (2016) have defined network planning in 5G networks as 

an optimization problem with decision variables such as transmission power and 

transmitter (BS) location. They have approached this problem by implementing several 

heuristic approaches, such as the differential evolution (DE) algorithm and the Real-

coded Genetic Algorithm (RGA). The key contribution of this paper is that the authors 

have proposed a modified RGA-based method to find the optimal configuration of BSs. 

This method not only provides optimal coverage of underutilized BSs but also 

optimizes power consumption. The overall aim of the work is to find a solution for 

network planning in 5G networks by using optimization techniques and reducing 

power consumption. 

 

3 Methodology 

In this research, we propose a simulation of a wireless sensor network using MATLAB. 

The simulation starts by clearing the command window, closing all open figures, and 

clearing all variables in the workspace. A for loop is implemented with the variable 

dlitr running from 1 to N ALL, where N ALL is the total number of iterations. 

The size of the simulation area is defined as 100 m x 100 m. The number of nodes 

in the simulation is defined as N set to 10. The range of the nodes is defined as rng set 

to 10 

m. The probability of a node becoming a cluster head is defined as p and set to 0.1. 

The energy supplied to each node is defined as Eo and set to 0.5 J. The transmitter and 

receiver energies per node are defined as ETX (50 nJ) and ERX (50 nJ) 

respectively. The amplification energy when the distance is less and greater than a 

certain distance d0 is defined as Efs (10 E-13 J) and Emp (13 E-13 J) respectively. 

The energy for data aggregation is defined as EDA set to 5 nJ. The distance between 

the cluster head and base station is calculated as the square root of the ratio of Efs 

and Emp and defined as do. These defined variables and calculated values are used to 

simulate a wireless sensor network, and the results are then analyzed. 

Once the area of the network under consideration was defined, as well as the number of 

nodes and the range. Various simulation parameters, such as energy supplied to each 

node, transmitter energy per node, receiver energy per node, amplification energy for 

d>d0 and d<d0, data aggregation energy, and distance between the cluster head and 

base station, were also defined. 

We distributed the nodes in two dimensions randomly. The base station is placed at the 

center of the entire area of 100 m x 100 m ( i.e., at 50 m X 50 m). The nodes and 

base station are then plotted and displayed with different symbols (BS and nodes). 

Circles are drawn around the nodes with the node location as the center and the range 

as the radius, using the viscircles MATLAB command. 

Figure 2 depicts the simulation setup for the experiment. Specifically, 10 nodes 

were deployed in a 100 meters by 100 meters area, with the red boundary around the 

center indicating the coverage range. The base station is located at the center of the 

space and is represented by a star mark at 50 meters by 50 meters. The entire space is 

mapped around the base station, with the X and Y axis showing the relative distance 

in meters. The small green dots on the figure indicate the actual location of the mobile 
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Fig. 2: Simulation was set up with 10 nodes deployed in 100 meter by 100 meter area, 

with the red boundary indicating the coverage range. The base station is located at 

the center of the space, indicated by a star mark at 50 meters by 50 meters, and the 

entire space is mapped around the base station. 

 

devices used in the simulation. By setting up the experiment in this way, we were able 

to capture the network performance under a controlled environment and evaluate the 

effectiveness of our proposed optimization algorithm. 

The coordinates of each node are then stored in a matrix. The distance of each node 

from every other node is then calculated using the mean square distance formula, so that 

the simulation setup can exactly find out the amount of power consumed, noise 

added, etc. This distance is then compared with the range, and an output matrix 

(outputmat2d) is defined that takes binary values. If the distance is less than the 

range, then the value of this output matrix is 1, otherwise, it is 0. This output matrix 

ensures that two nodes are capable of handling each other’s data. The distance of each 

node from the BS is also calculated using the mean square distance formula. This 

distance helps the simulation setup calculate the worst-case communication cost in case 

no other neighboring node is available. 

The base connection matrix (bsconnectupdated) is then initialized as an array of all 

zeros. The minimum distance from the list of distances stored with the simulation was 

then calculated, as well as the maximum distance. The distance of each node from the 

BS is then compared with the minimum distance obtained from the list, and if they 

match, the temporary bsconnect matrix is updated as 1, otherwise, it is kept as 0. 

After the iterations, the matrix of the bsconnect-updated matrix is obtained. 

For the next step, the bsconnect and outputmat2d matrices for each node were checked, and 

if both values were set to 1, then the bsconnectupdated of that particular node was 

modified. The unit node power was calculated with the help of transmission, receiver, 

and Efs energy. The maximum time for which the node can run was calculated using 

the formula for initial energy divided by unit node power. The research starts with the 

2-node scenario, where there are cases like case 1: when both the nodes are connected 

to BS directly. and case 2 when one node is connected directly and the other node is 

connected via node. For 2 node scenario, when both nodes were placed at x meters 

from the base station, we have simulated both cases. 

During each iteration unit node energy was reduced as per the equation 
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∗ 

∗ ∗ unitnodeE(i, n) = n.(dbasestation(ETX +ERX)+dbasestation   Efs)+(d(i, n). 

(ETX + ERX) + d(1, n).   Efs) 

Where, 

unitnodeE(i,n)= Unit energy lost from each i,n th node. i=current row value 

n=current column value 

dbasestation(ETX+ERX)= distance between base station and (ETX+ERX)th 

node ETX= transmitter node number 

ERX=Receiver node number Efs=Amplification energy when d<do d(i,n)= 

distance between i,n th node 

 

The total time for which node can connect without failure can be computed through 

equation of timeunitrun 

 

timeunitrun(i, n) = Eo/unitnodeE(n); 

 

Where, 

timeunitrun(i,n)=Total time for which node i,n can run for. Eo= Current energy 

remaining with the node at o th instance unitnodeE(n) = Unit energy lost from 

each n th node per iteration. 

Similarly, we compute ratio of optimized (i.e. minimum in this case) power to the 

actual power. Once time and power values are known then we compute the error 

function for a set of time and power data for each node. During error function 

computation we first convert the time and power data into column vectors for ease of 

computation. Then, we calculated the maximum value of the time data and used it to 

compute the error measure for the time data. The error measure was computed by 

subtracting each time value from the maximum time value and dividing the result by 

the maxi- mum network time (Desired value) of the resulting values. Hence as the 

number goes down slowly results are moving toward desired results due to 

optimization. Similarly, the minimum value of the power data is calculated and used 

to compute the error measure for the power data. The error measure for the power data 

was calculated by subtracting each power value from the minimum power value, 

dividing the result by the maximum of the absolute values of the differences. Here 

maximum difference value has to be minimized. Finally, the error function is calculated 

by averaging the error measures for the time and power data. for both data, the zero 

value is the ideal value. The code then finds the bottommost five minimum values of 

the error function and stores their indices for the training of machine learning. 

 

3.1 MOOA algorithm 

• Define simulation area size (100m x 100m), number of nodes (N = 10), range 

of nodes (rng = 10m), probability of a node becoming a cluster head (p = 0.1), 

energy supplied to each node (Eo = 0.5 J), transmitter and receiver energies per 

node (ETX 

= ERX = 50 nJ), amplification energies for distance d>d0 and d<d0 (Efs = 

10E- 13 J and Emp = 13E-13 J, respectively), and energy for data aggregation 

(EDA = 5 nJ). 

• Calculate the distance between the cluster head and base station as the square root 

of the ratio of Efs and Emp and define it as do. 

Randomly distribute nodes in two dimensions. Place the base station at the center 

of the area (50m x 50m). Plot nodes and base station and draw circles around the 

nodes using the viscircles MATLAB command. Store the coordinates of each 

node in a matrix. 

• Calculate the distance of each node from every other node using the mean square 

distance formula and compare it with the range. Define an output matrix (output- mat2d) 

that takes binary values, where 1 represents that two nodes are capable of handling each 

other’s data and 0 represents otherwise. 

• Calculate the distance of each node from the base station and initialize the base 
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connection matrix (bsconnectupdated) as an array of zeros. Update the temporary 

bsconnect matrix as 1 if the distance of each node from the base station matches 

the minimum distance obtained from the list. 

• Check the bsconnect and outputmat2d matrices for each node, and if both values 

are 1, modify the bsconnectupdated of that particular node. Reduce the unit node 

energy at each iteration 

• Nodes generate optimal paths by finding their next optimal node for transmission 

and reception, resulting in the minimum energy path. 

 

4 Results 

The results of our proposed optimization algorithm were evaluated using a confusion 

matrix. 

In the context of evaluating the results of the proposed optimization algorithm, the 

confusion matrix depicted in Figure 3 is used to illustrate how the true and predicted 

values for the packet’s path are related. The confusion matrix is a matrix that contains  

information on the actual and predicted classifications of the data. In this case, the 

true positive value of 42 represents the number of cases where the optimal path for 

packet transfer was correctly identified both by the MOOA and the ground truth. On 

the other hand, a true negative value is recorded when neither the MOOA nor the 

 

 
 

Fig. 3: 

The confusion matrix represents the relationship between the true value and the 

predicted value for the packet’s path. A true positive value of 42 indicates the 

existence of an optimal path for packet transfer, which was followed by both MOOA 

and the ground truth. A true negative value is recorded when neither MOOA nor the 

ground truth prediction for the path. 

 

 

ground truth prediction for the path. This means that the MOOA did not predict the 

path, but it was also not the actual path taken by the packet in reality. 

The true positives were recorded when the multi-objective optimization algorithm 

(MOOA) generated results that matched the ground truth. For example, if a packet with 

10 nodes was supposed to follow a path of node 3-4-7 and MOOA also resulted in 

the same path, it was considered a true positive. True negatives were recorded when 

the desired path and MOOA predicted path both predicts direct communication with 

the base station. False negatives were recorded when the desired path was direct 

communication with the base station, but MOOA predicted a path through some node. 

On the other hand, false positives were recorded when the predicted packet path did 

not match the desired ground truth. 

We aimed to minimize power transmission and maximize network lifetime for all packet 

paths. Our results showed a sensitivity of 84%, which was lower compared to previously 

reported results for 5G networks, but acceptable given that this was the first study on 

6G networks. Our specificity was 99.2%, which was in line with benchmark standards 

and even exceeded some of the values reported in the literature. The false positive rate 

was 0.008 and the false negative rate was 0.16. The average accuracy of our predictions 

was 98.48%, and our system had a lower f1 score of 0.84 and a Matthews correlation 

coefficient of 83.2%. 

 

5 Discussions 

The research paper proposes a multi-objective optimization algorithm to minimize 

power consumption and maximize network lifetime in 6G mobile communication 
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networks. The proposed approach considers the limited battery capacity of battery- 

powered devices, which is a major challenge in reducing energy consumption and 

extending network lifetime. The results indicate that the algorithm achieves an accu- 

racy of up to 98.48%, a sensitivity of 84%, and a specificity of 99.2%. This research 

has important implications for reducing costs and extending the network lifetime while 

also reducing the environmental impact of technology on society. Moreover, the 

proposed approach can also be extended to other wireless networks that rely on battery-

powered devices, such as the Internet of Things (IoT) and sensor networks. We have 

limited the study to static and partial dynamic and homogenous nodes only. But future 

researchers can focus on dynamic and heterogenous nodes to design energy-efficient system 

using MOOA. The proposed research has significant potential for future applications 

in 6G networks. Further research can be carried out to optimize other important fac- 

tors such as network coverage and capacity, which are also essential in enhancing the 

performance of 6G networks. Moreover, the approach can be extended to other net- 

work architectures such as edge computing, which can lead to more energy-efficient and 

sustainable communication networks. Additionally, the proposed approach can be 

combined with other optimization techniques to further improve the performance of 6G 

networks. This research provides a promising foundation for future research in the field 

of sustainable and energy-efficient communication networks. 

 

6 Conclusions 

The paper highlights the critical role of sustainable energy solutions in 6G mobile 

communication networks, which rely on battery-powered devices with limited 

capacity. The proposed multi-objective optimization algorithm (MOOA) is shown to 

be effective in minimizing energy consumption, extending network lifetime, and 

reducing the environmental impact of technology on society. The accuracy of 98.48%, 

sensitivity of 84%, and specificity of 99.2% of the algorithm demonstrate its potential 

to achieve optimal packet path via node selection for data transmission. The 

findings of this research can inform the development of future energy-efficient 6G 

networks that can reduce costs, extend network lifetime, and promote sustainability. It 

is hoped that the outcomes of this research will encourage further investigation and 

implementation of energy-saving strategies for mobile communication networks to 

address the sustainability challenges faced by the rapidly evolving digital era. 
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