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Abstract:  

Agriculture serves as the fundamental backbone of a nation, accounting for almost 50% of the 

global economy. Precision agriculture is crucial for assessing the condition of crops in order 

to identify appropriate measures for plant care. The given text is incomplete and does not 

provide enough information to rewrite it in a straightforward and precise manner. Please 

provide more context or complete the sentence. The traditional approach of predicting leaf 

diseases lacks stability and only offers limited accuracy in its predictions.  

This study focuses on creating an enhanced module for predicting leaf illnesses with high 

accuracy. The module utilizes a hybrid optimization guided adaptive fuzzy expert system for 

disease detection. The Internet of Things (IoT) is recognized for its ability to gather real-time 

data. The suggested model makes use of the data acquired via the IoT framework. The data is 

analyzed to identify the existence of diseases in the crop, facilitated by the suggested Cat 

swarm-based Harris Hawks (CSHH) optimization method. The CSHH optimization method will 

be created by integrating the key features of the cat swarm optimization (CSO) algorithm and 

the Harris Hawks optimization (HHO) algorithm. 

Keywords: IoT, Fuzzy Expert System, CSHH, CSO, HHO. 

1. Introduction 

Disease of the plant causes the withering of the flowers, fruit, and foliage, and in extreme cases, 

plant death, which can result from failure to detect and prevent the disease. Therefore, in order 

to diagnose plant leaf1 diseases more precisely, an automatic recognition of diseases 

mechanism with enhanced precision is required. This necessitates a reevaluation of 

conventional approaches to plant disease identification mechanisms, including an examination 

of their accomplishments, challenges, and methods, in order to incorporate them into a novel 

method that provides more precise predictions[1-5]. 

The implementation of smart agriculture leverages the potential of the internet of things 

(IoT) within the agricultural sector. Furthermore, the Internet of Things (IoT) plays a pivotal 

role in various application domains, including security, smart cities (e.g., smart traffic control 

systems), healthcare management, and more [1,2]. Through the utilisation of IoT sensors, a 

tremendous volume of data is collected, encompassing both unstructured as well as structured 

formats. The data obtained from sensors through the analysis of agricultural scenarios, such as 

images of fields, contributes to the resolution of numerous challenges in the agricultural 

sector[3]. Sophisticated data analytics is utilised within the agricultural sector to identify 
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anomalies and detect diseases in pictures of crops or plants[4,5]. The integration of the Internet 

of Things (IoT) into the agricultural sector aims to improve the efficiency of sensor-based 

recognition methods. Precision farming, automated development of agriculture, and 

environmental forecasting are a few of the agricultural innovations that have emerged in recent 

years through the application of Artificial Intelligence (AI) as well as Machine Learning (ML) 

[6]. Modern cultivation utilising mechanised techniques increases the yield of higher-quality 

products, thereby assisting in the improvement of farmers' incomes [7]. This is particularly 

significant in India, where agriculture serves as the primary source of income for the majority 

of the population. 

It is possible to determine the illness that affects plants by examining the leaves of the plants. 

This is due to the fact that the disorder of the plants is first impacted in the leaves. In the case 

of the plant that is completely afflicted, black spots appear on every leaf of the plant. In light 

of this, the identification of the illness by taking into account the leaf of the plant is very 

necessary in order to improve the yield of the produce. In this day and age, thanks to the 

progression of technology, automated devices are being produced for the detection of illness at 

a lesser cost. These gadgets are beneficial to farmers since they help them in increasing their 

productivity. The use of automated disease identification helps with the correct diagnosis and 

the administration of the most suitable pesticides to plants, which in turn helps to keep the 

environment from being polluted. In addition, the treatment of the plants against illness helps 

to safeguard the lives of the animals and insects that are dependent on the plants[8]. In addition, 

the cost that is used to carry out the therapy of the plant is decreased as a result of the correct 

treatment of the plants, which involves a more precise identification of the disease [9]. Multiple 

researchers developed a number of methods for the identification of plant diseases. These 

methods were based on the process of segmentation feature extraction, and classification, and 

they were accomplished via the use of image processing and soft computing[10-15]. 

When it comes to the old ways of detecting diseases in plant leaves, human intervention is 

crucial. It could be time-consuming and prone to error if the specialist in the field only looks 

at the plant to see whether it has any diseases. Because of this, the ability to identify diseases 

in plants' leaves instinctively is crucial for treating plants in a timely manner to increase 

production. Recently, soft computing algorithms for detection using identification and 

classification criteria were created with little time and cost. It makes use of optimisation 

techniques such as Genetic Algorithm (GA), Bacterial Foraging Optimisation (BFO), Fuzzy 

Logic (FL), Neural Network (NN), Particle Swarm Optimisation (PSO), and many more. This 

is where soft computing comes in handy, allowing for autonomous illness detection with little 

to no human interaction required [16]. To guarantee the model's convergence and consistency, 

a dynamic fuzzy system of control is created by merging neural networks employing fuzzy 

rules[17,18]. 

Therefore, the primary goal of this study is to use adaptive fuzzy control to create a reliable 

model for predicting plant diseases. The suggested fighter kitten optimisation is used to tweak 

the fuzzification and defuzzification layers' adjustable parameters, resulting in better 

judgements with less loss. The suggested prediction model's temporal complexity is minimised 

by processes like RoI extraction and feature extraction. 

The remaining part of this proposed plant disease method is organised as follows: the 

assessment of the existing plant disease forecasting mechanism is discussed in Section 2, the 

system's model is described in section 3, and the suggested Cat swarm-based Harris Hawks 

(CSHH) optimisation method is detailed in Section 4. The examination of the suggested Cat 
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swarm-based Harris Hawks (CSHH)  Adaptive Fuzzy approach is outlined in Section 4, and 

Section 5 provides a summary of the findings. 

2.Literature Review 

The authors of [1] described a method for predicting plant leaf diseases using deep learning. 

This method takes into account multi-channel input, namely the picture of the leaf and the soil. 

The soil and leaf pictures were obtained and their characteristics were linked using the 

Pearson's correlation coefficient. The technique achieved a greater average accuracy, but it did 

not include feature extraction, which might further minimise computational cost and improve 

performance speed. [2] introduced an improved deep learning approach that incorporates a 

depth-wise separable layer. This method also addresses the problem of colour segregation and 

accurately identifies many illnesses by using the Gamma technique for picture rectification. 

The method's inability to assess performance with greater data is seen as a negative. The 

performance of deep learning is improved by using the AlexNet, surpassing the effectiveness 

of other conventional approaches [3-5]. The approach used the Adam optimizer to train and 

assessed the loss function using cross-entropy to achieve the optimal output. Nevertheless, the 

approach was unsuccessful in enhancing the velocity of the categorization process via 

supplementary modules. The illness propagation and forecasting were used by [6], whereby 

picture segmentation was performed to extract the key features. When it comes to using AI 

with DCNNs, there are a lot of obstacles, such as creating a model that fits the dataset, gathering 

a large dataset to train the model, figuring out how many layers to use, and calculating the 

amount of neurons in each layer. Furthermore, it is not easy to figure out how many parameters 

to feed into CNN[7-11].The technique exhibited high diagnostic accuracy and provided therapy 

suggestions; nevertheless, its performance was somewhat slower. 

The  proposed a method for predicting leaf disease using machine learning and segmentation, 

which was further improved via the use of optimisation techniques[12-15]. The complexity 

reduction was achieved by using background removal and picture segmentation. The 

classification was conducted using a multi-kernel machine learning technique, taking into 

account the leaves of medicinal plants. This approach achieved high accuracy in the 

classification process. However, additional improvements are required for its application-based 

implementation. The development of deep learning using fuzzy logic, as proposed by [8], 

involves the use of thresholding techniques to forecast the extent of the condition. The 

segmentation was performed using a threshold criterion, and a fuzzy-based judgement was 

made to determine the severity of the illness[16,17]. The method's validation was not used to 

demonstrate its robustness. For improved results, [18] used the deep learning approach with 

segmentation-based area of interest (ROI) mining to forecast diseases. In this study, 

illumination-based augmentation was used to enhance the identification of the varied backdrop. 

However, the accuracy improvement may be compromised when the number of epochs 

decreases throughout the model training process. The authors in [19,27] proposed a machine 

learning approach that incorporates depth learning. This method includes segmentation and 

extraction of features stages for reliable multi-classification. However, the lack of optimisation 

consideration results in the loss of information during classifier training, which can potentially 

degrade performance. 

3. PROBLEM STATEMENT  

The issues pertaining to the envisaged model of predicting plant leaf diseases are as follows: 

• Image processing as well as measurements were used in the method described in [20] 

to identify the severity of diseases of plant leaves. An accuracy of 96% in detecting the 

severity of plant leaf diseases was achieved using this approach [20]. The problem with 
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this approach was that it was only usable by those with scientific backgrounds or 

extensive experience using image processing [21]. 

• Otsu clustering thresholding relies on minimising variation within each class by 

choosing a threshold value to divide the picture into two groups. The distributions 

themselves cannot be adjusted for obvious reasons, however the variance of the two 

portions of the distribution may be modified by selecting a threshold value. The 

combined spread must be minimised, hence choosing a threshold is critical [23]. 

• Since barometric pressure is steady, its effects are hard to assess. However, barometric 

pressure along with rainfall impacts favourable predictions. Thus, barometric pressure 

impacts must be studied in numerous areas[27]. 

• The majority of traditional classifiers work best with smaller datasets and use hand-

crafted picture features to sort data into groups. They are not good for handling very 

large datasets [22,24,26]. 

4.PROPOSED METHODOLOGY 

The primary objective of the project is to create and implement an adaptive fuzzy expert 

system, using IoT technology, for the purpose of predicting leaf diseases in agricultural 

areas. At first, the IoT nodes gather the picture data from the field of farming and transmit 

it into the sink node. In the agricultural field, the sink node will serve as data aggregator, 

while the resulting picture data collection will serve as the input database for processing in 

order to identify the specific kind of plant leaf disease. The picture data will undergo basic 

pre-processing to eliminate any artefacts that may be visible on the image. Furthermore, 

the Region of interest (RoI) shall be retrieved from the pre-processed picture. The pre-

processed picture will undergo a feature extraction method to extract important local 

directional ternary pattern (LDTP), locally directional and extremal pattern (LDEP), and 

Median ternary pattern (MTP) features. The retrieved features will be concatenated to 

generate the feature vector, which will then be inputted into the adaptive optimum fuzzy 

expert system. The suggested Cat swarm-based Harris Hawks (CSHH) optimisation 

technique will be used to build the rules of the fuzzy expert system [25] in an optimum 

manner. The CSHH optimisation method is created by integrating the key features of the 

cat swarm optimisation (CSO) algorithm [28,30] along with the Harris Hawks optimisation 

(HHO) algorithm [29]. 

The primary goals of the suggested paradigm are 

• The objective is to create a highly efficient and adaptable expert system that use 

fuzzy logic to accurately forecast plant leaf illnesses. This system will utilise data 

obtained via the Internet of Things (IoT) to effectively regulate and mitigate the 

impact of these diseases on the whole plant. 

• The objective is to create an efficient hybrid optimisation method called Cat 

swarm-based Harris Hawks (CSHH) optimisation algorithm. This algorithm will 

be used to optimise the parameters of the adaptive fuzzy expert system. 

• To effectively manage the dynamic fuzzy expert framework in order to improve 

the effectiveness of the system in predicting plant leaf diseases. 

• The goal is to put the model into action and make it possible to compare different 

approaches; this will show how the suggested model for plant leaf disease fares 

better. 

4.1.System Architecture 
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Specifically, the Internet of Things sensors are used for the purpose of acquiring 

information on leaf disease, as seen in Figure 1. IoT nodes, cluster heads (CH), along 

with base stations (BS) are the components that make up the Internet of Things 

environment that is used for the information collecting. Radio link communication 

allows for direct connection between the nodes in the Internet of Things environment 

and the relevant CH. The nodes are dispersed equally across the environment. The 

transmission of data is sent to the base station (BS) via the corresponding CHs, where 

all of the nodes are positioned in a fixed location. Every node in the network's hierarchy 

has an unique ID for the purpose of data transmission, and the transfer of data is routed 

to the BS. Let us assume that the power of the terminals at the beginning of the network 

is denoted by the symbol, and that the network does not make use of the recharging 

process. Therefore, a certain amount of energy was lost at the nodes of the network 

together with the free space for each and every information transfer.  In the CH node, 

the energy loss is represented by the notation, 

Eloss(DataCH
x) = EEE ∗ DBsize      (1) 

The energy that is lost at the regular node is denoted by  Eloss, the size of the data packet 

is denoted by DBsize, the data that is sent from the node itself to the CH is denoted by 

DataCH, and the energy that is lost as a result of electronic energy is denoted by EEE. 

Up until the point when the node is rendered inoperable and its energy level drops 

below zero, the transmission of data packets continues. 

 

Figure 1: IoT-based information gathering regarding the plant leaf disease 

4.2.Proposed Cat swarm-based Harris Hawks (CSHH) optimisation based Adaptive 

Fuzzy Expert System for plant leaf disease prediction 

It is possible for farmers to improve crop yield by avoiding the spread of plant diseases and 

improving the quality of the soil via the use of leaf images, which may be used to determine 

the presence of plant diseases in advance. The purpose of this project is to develop an automated 

framework for the prediction of leaf diseases relying on the AFES via the use of the Internet of 

Things in agricultural settings. In the beginning, the leaf pictures that are obtained by the 

sensors that are installed on agricultural fields are pre-processed in order to remove any 

artefacts and retrieve the Region of Interests (RoI) from the image that has been captured.  

 



344 Optimized Adaptive Fuzzy Expert System-Based Plant Leaf Disease Prediction Model Using Data 

Through Internet Of Things 
 
 

 

Figure 2. Proposed plant leaf disease prediction model 

First, the relevant characteristics are retrieved by using the Median ternary pattern (MTP), 

followed by the local directional ternary pattern (LDTP), and last, the locally directed and 

external patterns are extracted. After the features have been retrieved, they are merged to 

produce the feature vector, which is then used by the adaptable fuzzy expert system to achieve 

the correct determination result. Furthermore, in order to acquire the accurate output, the rules 

of the fuzzy system for experts are ideally defined by means of the Cat swarm-based Harris 

Hawks (CSHH) optimisation method that has been suggested.  

4.2.1. Data gathering 

For the purpose of accurately monitoring the development of plants, the contemporary 

agricultural system necessitates the gathering of information about plants and the 

circumstances in which they are grown. The information that is provided by the data, which 

includes photos of plant leaves, relative humidity, moisture in the soil, and temperature, yields 

accurate information about the status of the plant's health and assists in the prediction of crop 

output. Therefore, the information that was described before is gathered straight from the field 

of agriculture by means of the sensors, and it will be kept in the nodes that are part of the 
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Internet of Things.  Plant images data is extracted from the data that has been saved, and then 

it is subjected to further processing in order to conduct the plant leaf disease forecasting. 

4.2.2. Image pre-processing and ROI extraction 

The collected picture undergoes preprocessing and ROI extraction to enhance image quality 

and reduce model training time. The image preprocessing involves a range of procedures, 

including reshaping, colour correction, optimisation, and feature extraction, aimed at 

enhancing the quality of the picture. Extracting the Region of Interest (RoI) from the picture 

helps minimise the damage present in the image, hence enhancing the precision of the model. 

In addition, the RoI extraction procedure will reduce the computation time by removing 

unnecessary elements from the picture. 

4.2.3.Feature Extraction  

The important features are derived from the ROI to minimise computational overhead using 

the local directional ternary pattern (LDTP), Median ternary pattern (MTP), and the local 

directional and extremal pattern (LDEP) approach. A more complete explanation is provided 

below. 

4.2.3.a.Local Directional Ternary Pattern  

The local directional ternary pattern, also known as LDTP, is not affected by noise or 

illuminations and offers more useful characteristics with respect to edge reactions. In addition, 

the LDTP technique is more reliable in terms of the local primitives, and it takes into account 

nine edge responses. These edge responses correspond to the edge responses of the core pixels 

and the eight edge responses of the periphery pixels. A comparison is made between the core 

pixel and the periphery pixel at this stage of the encoding process in order to evaluate the 

directional pattern. In terms of mathematics, the LDTP may be expressed as follows: 

TPLD = {
+1ifpx ≥ 0andqx ≥ 0
−1ifpx ≤ 0andqx ≤ 0

0otherwise

       (2) 

In this context, the centre pixel is denoted as px and qx while the LDEP trait is denoted as TPLD. 

4.2.3.b.Median Ternary Pattern 

Median filters are efficiently used for the extraction of features in the face of noise, resulting 

in precise information. A three-valued code is generated by taking into account the user-defined 

threshold, which guarantees strong performance against noise in regions that have a nearly 

uniform distribution. The assessment of the median pixel's intensity is based on the calculation 

of the intensity of nine pixels. Next, the pattern is used to establish three distinct values, and 

the expression used to generate the MTP code is known as, 

PLF2(r) = {

+1r > Medk + Th
0Medk − Th ≤ r ≤ Medk + Th

−1r < Medk − Th
    (3) 

where, the local median is notated as Medk, the threshold is notated as Th, the neighbor gray 

level is notated as r, and the MTP feature is notated asPLF2. 

4.2.3.c.Locally Directional and Extremal Pattern (LDEP) 

The LDEP consists of two components: the Neighbor's Extremum-Related Local Pattern 

(NERLP) as well as the Directional Local Differential Count Patterns (DLDCP). The DLDCP-
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based information extraction method extracts both the magnitude as well as symbol information 

from the location of the centre pixel. The formula for obtaining the magnitude along with 

symbol information at the odd location is given as 

OddPositionSI = ∑ h(rs(p, q) − rk(p, q))
s∈odd
s=1     (4) 

where, r(a) = {
1a ≥ 0

0otherwise
     (5) 

where, the circumstance pixel gray value is notated asrs(p, q), and the gray value of the central 

pixel is notated asrk(p, q). Here, the symbol information of the odd position is referred to 

asOddPositionSI. 

The magnitude of the odd position is notated as, 

OddPositionMag = ∑ h(mags(p, q) − meank(p, q))
s∈odd
s=1    

 (6) 

where, mags(p, q) = |rs(p, q) − rk(p, q)|     (7) 

Here, the difference between the magnitude of the rs(p, q)andrk(p, q) is referred to 

asmags(p, q), the magnitude of odd position is notated asOddPositionMag, mean of all median 

value in the input image is notated asmeank. 

Subsequently, the data pertaining to the magnitude and symbol associated with the even 

location is denoted as: 

EvenPositionSI = ∑ h(rs(p, q) − rk(p, q))
s∈even
s=1     

 (8) 

EvenPositionMag = ∑ h(mags(p, q) − meank(p, q))
s∈even
s=1    

 (9) 

where, the magnitude of the even position is notated asEvenPositionMag and the symbol 

information of the even position is notated asEvenPositionSI. 

Following the extraction of the details for the both even and odd locations of the inputs, the 

NERLP is retrieved by taking into consideration the location along with difference patterns for 

the collection of information linked to the intensity. In this case, the extraction of the maximum 

intensity as well as location value is accomplished by utilising the phrase that follows: 

value1 = max
0≤s≤N−1

(rs(p, q))      (10) 

 location1 = arg max
0≤s≤N−1

(rs(p, q))     (11) 

where, Nrefers to the circumjacent pixel. Then, the minimum value and the location are 

obtained as, 

value2 = min
0≤s≤N−1

(rs(p, q))      (12) 

 location2 = arg min
0≤s≤N−1

(rs(p, q))     (13) 

Finally, the extreme difference pattern based on the symbol information and the magnitude is 

expressed as, 
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ExtremedifferenceSI = {
∑ h(rs(p, q)) − [

value1+value2

2
] ,Wh ≤ 2N−1

s=0

N + 1otherwise
 

 (14) 

where, Whrefers to the uniform pattern and the extreme difference pattern corresponding to the 

symbol information is notated asExtremedifferenceSI. 

Extremedifferencemag = {
∑ h(is(p, q)) − ik(j),Wi ≤ 2N−1
s=0

N + 1otherwise
  (15) 

where, Wirefers to the count of transition of numbers from 0 to 1 or 1 to 0, ik(j) refers to the 

mean for the input image, and the magnitude of the extreme difference is notated 

asExtremedifferencemag. 

Thus, based on the NERLP and DLDCP features the LDEP features are obtained and are 

notated asPLF3 

4.2.4. Concatenation of Extracted Features 

The characteristics that were collected from the earlier methodologies are concatenated in order 

to form a feature vector. This feature vector is then supplied to the AFES in order to categorise 

the plant leaf diseases. It is expressed as, 

PLF = {PLF1, PLF2, PLF3}      (16) 

where, the concatenated feature is denoted as PLF, the MTP feature is notated as PLF2, the 

LDEP feature is notated as PLF3 , and the LTEP feature is notated as PLF1 respectively. 

4.3. Disease classification using Cat swarm-based Harris Hawks (CSHH) optimisation -

based Adaptive Fuzzy Expert system 

In order to accomplish the illness classification, the Adaptive Fuzzy Expert Systems (AFES) is 

used. Within this system, the changeable parameters that are utilised in the fuzzification as well 

as the de-fuzzification layers are modified by using the Cat swarm-based Harris Hawks 

(CSHH) optimisation technique that has been suggested. 

4.3.1.Architecture of Adaptive Fuzzy Expert System 

The illness prediction is carried out with the assistance of the Adaptive Fuzzy Expert Systems 

(AFES), which is seen in Figure 3. Not only does fuzzy-based illness prediction not need the 

involvement of an expert, but it also does not require more information. For this particular 

instance, the if-then rule is used in the suggested disease of plant leaves prediction in order to 

make the forecast of the illness. To improve the accuracy of the forecasts, the AFES utilises 

both the fuzzy rule and artificial intelligence (AI) in conjunction with one another. 

Additionally, the mistake reasons that are caused by the memorising of the data are minimised 

in the AFES, and it is more visible. Additionally, the learning process of the AFES in 

conjunction with optimisation helps to adjust the changeable factors in the first and fourth 

layers, which ultimately results in judgements that are more accurate while incurring the least 

amount of loss. A representation of the layout of the AFES may be seen in Figure 3. 
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Figure 4: Architecture of Adaptive Fuzzy Expert System 

The input that is obtained by the AFES is denoted by that, and the output that corresponds to 

that input is denoted by that. In this case, the fuzzy sets that were used for the purpose of 

building the parameters for the forecasting of the disease of plant leaves are denoted as 

accordingly. Furthermore, the outputs that were generated inside the fuzzy area are denoted as 

in accordance with the fuzzy rule that was determined by the suggested Cat swarm-based Harris 

Hawks (CSHH) optimisation method. Through the process of learning the AFES model, the 

parameters are optimised by using the Cat swarm-based Harris Hawks (CSHH) optimisation 

method that has been provided. Squares are used to represent both the adaptive nodes and the 

fixed nodes in Figure 4. The squares are used to represent the adaptive nodes. 

4.3.1.a.Fuzzification: 

According to the AFES, the fuzzification layer is composed of adaptive nodes. These nodes 

are responsible for providing the output by taking into account the degree of membership for 

the associated input. The expression for this layer is as follows: 

At
1 = αPt(u), t = 1,2      (17) 

At
1 = αQt−2

(v), t = 3,4      (18) 

where, the linguistic label is notated as Pt, in which αPt(u), and αQt−2
(u) adopt the membership 

function, in which the values are obtained through the bell-shaped curve, in which “0” states 

to the minimum value and “1’ denotes to the maximal value and is expressed as, 

αPt(u) =
1

1+{(
u−lt
nt

)
2

}

mt      (19) 

where, the premise parameters are notated as nt, mtandltrespectively.  
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4.3.1.b.Multiplier(𝐂): This layer makes use of simple multiplication, which results in the 

product being obtained via the use of fixed nodes. This layer is responsible for producing the 

product that is expressed as 

At
2 = at = αPt(u)αQt

(v)t = 1,2      (20) 

here, the term atrefers to the fire strength of the rule. 

4.3.1.c.Normalization(𝐃): This layer makes use of the aggregation of the fire intensity rule by 

calculating the ratios of fire intensity that correlate to the node. The expression for this rule is 

as follows: 

At
3 = at =

at

a1+a2
t = 1,2     (21) 

Thus, the output acquired from this layer represents the normalized fire strengths. 

4.3.1.d.Defuzzification: Using the adaptive nodes that are used in this layer, the normalised 

firing strengths are multiplied by the first-order polynomial, and the results are represented as 

follows: 

At
4 = atet = at(xtu + ytv + zt)t = 1,2    (22) 

 here, xt, yt, andztrefers to the consequent parameters. 

4.3.1.e.Output: For the purpose of predicting the plant leaf disease, the calculation of the total 

of the overall outputs is carried out and is stated as 

At
5 = ∑ atet =

∑ atet
2
t=1

a1+a2

2
t=1        

 (23) 

Here, the tunable parameters utilized in the fuzzification and the defuzzification layers like 

nt, mtandltand xt, ytandztare tuned using the Cat swarm-based Harris Hawks (CSHH) 

optimisation algorithm for enhancing the performance of the AFES model. 

4.3. Proposed Cat swarm-based Harris Hawks (CSHH) optimisation algorithm 

For the purpose of developing the Cat swarm-based Harris Hawks (CSHH) optimisation 

algorithm, the food-catching behaviour of the Hawks [16] and the awareness of the Cats [17] 

in migrating from one position to another area in quest of food are combined and incorporated. 

The suggested Hawks Cat optimisation method considers the cooperative attacking technique 

of hawks and their various pursuit patterns. Hawks wait on higher perches or trees in the early 

twilight to find their prey. Hawks may use a leapfrog movement to capture the prey by flying 

over the targeted region using split as well as rejoin criteria. Hawks can use coordinated assault 

to catch the target from all angles, limiting the quarry's escape. Thus, Hawks use numerous 

hunting methods to obtain prey. Hawks seek the specified area for the quarry and then try to 

catch it using different assault methods. Hawks' hunting approach is improved by ignoring prey 

capture awareness. To improve predation, the cat's awareness likelihood is combined with the 

Hawks' food-capturing behaviour. 

Cats may be awake even while napping by opening their eyelids. Cats move slowly and 

cautiously or remain in the same place with heightened attention to avoid assaults. In the Hawks 

Cat optimisation system, the cat's awareness is combined with the Hawks' food-capturing 

behaviour to prevent prey escape. Thus, cautious prey acquisition with high vigilance is quicker 

and less likely to escape, ensuring rapid convergence and improved exploitation. Training the 
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AFES model to identify illness is difficult owing to significant learning loss. By fine-tuning 

the premises and variables at the fuzzification along with de-fuzzification phases of the AFES 

model, Hawks Cat optimisation minimises loss in prediction model learning. The suggested 

Hawks Cat optimisation improves plant forecast accuracy by balancing intensification and 

diversity requirements with cat and Hawk awareness. 

4.3.1.Steps of Proposed Cat swarm-based Harris Hawks (CSHH) optimisation 

Algorithm 

This section provides a full explanation of the processes used to discover the best tuning 

solution for the AFES in plant disease forecasting using leaf analysis. 

Step 1: Initialization of Parameters : Initializing the Hawk's population in the feature space, 

the total population size is denoted as TP, and the maximum iteration is specified as Maxiter. 

Step 2: Fitness Function: The fitness is computed for every hawk in the fitness set in order to 

provide an updated location. It serves as a function to address optimisation problems and is 

denoted as follows: 

  Fit_Func =
FFtp+FFtn

FFtp+FFtn+FFfp+FFfn
     

 (24) 

whereby the fitness is expressed as Fit_Func, the true positive as FFtp, the true negative as 

FFtn, the false positive as FFfp, and false negatives as FFfn. 

Algorithm 1: Pseudo-code for proposed Cat Swarm-Based Harris Hawks 

(CSHH)Optimization 

Pseudo-code for proposed Cat Swarm-Based Harris Hawks (CSHH)Optimizatio 

H(i), Ν and itermax 

H(i + 1) 
Initialize the population with population size   N 

While i ≤ itermax 

Estimate the Hawk's fitness value 

Set Hprey(i) as the best location of the prey 

Update the initial energy EGIand jump strength M 

Update Zas per equation (27) 

if (|Z| ≥ 1)then   

Diversification phase 

Update the position using (25) 

if (|Z| < 1) 
Intensification phase 

If 𝐰 ≥ 𝟎. 𝟓and 𝐙 ≥ 𝟎. 𝟓then  

Update the position using (28) 

If 𝐰 ≥ 𝟎. 𝟓and 𝐙 < 𝟎. 𝟓then  

Update the position using (31) 

else If 𝐰 ≥ 𝟎. 𝟓and 𝐙 ≥ 𝟎. 𝟓then  

Update the position using (32) 

else If 𝐰 < 𝟎. 𝟓and 𝐙 < 𝟎. 𝟓then 

Update the position using (33) 

Integrate the characteristics of a kitten  
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If 𝐰 ≥ 𝟎. 𝟓and 𝐙 ≥ 𝟎. 𝟓then  

Update the position using (40) 

If 𝐰 ≥ 𝟎. 𝟓and 𝐙 < 𝟎. 𝟓then  

Update the position using (42) 

else If 𝐰 ≥ 𝟎. 𝟓and 𝐙 ≥ 𝟎. 𝟓then  

Update the position using (43) 

else If 𝐰 < 𝟎. 𝟓and 𝐙 < 𝟎. 𝟓then  

Update the position using (44) 

Return H(i + 1) 
 

Step 3: Differentiation: During this stage, sitting haphazardly on towering trees or poles serves 

as the quarry hunt. Given the possibility of locating the prey be P, the hawk's location during 

the differentiation phase is stated as, 

H(i + 1) = {
Hd(i) − a1|Hd(i) − 2a2H(i)|b ≥ 0.5

[Hprey(i) − Hc(i)] − a3[Y + a4(X − Y)]b < 0.5
   

  (25) 

When the hawk's position is indicated as H(i + 1), the quarry's location is indicated as 

Hprey(i),the parameters' a1,a2,a3,a4random number range is [0,1], and the associated iteration 

is indicated as b. The hawk's average location is shown as Hc(i) while the hawk that was 

selected at random is indicated as Hd(i). The top and lower borders of the feature space are 

referred to as X and Y are boundaries. 

Step 4: Phase changeover: The energy of the prey determines when the hawk phase shifts 

from diversification to intensification, and the formula for calculating the energy of the prey is 

as follows: 

EGI = 2EGI (1 −
iter

itermax
())      (27) 

where EGI is the prey's starting energy, itermax denotes the maximum iteration, and EG 

represents the prey's energy needed to escape the hawk. 

Step 5: Intensification: In order to catch the prey without escaping, the group of hawks attacks 

them concurrently from several angles in an attempt to grab the target. The hawk's propensity 

to escape the quarry is indicated by K. The likelihood of fleeing away from a hawk is higher 

when the K value is larger than 0.5. Otherwise, the likelihood of escape is lower. Here, four 

distinct tactics are taken into consideration for the amplification of the prey in the suggested 

Cat swarm-based Harris Hawks (CSHH) optimization. 

5.Experimental setup 

This section provides detailed information on the software requirements, dataset, and 

performance measures used in the study of the illness prediction model. The illness detection 

model is implemented using MATLAB, specifically the MATLAB 2020a programme running 

on a Windows 10 operating system with 8 GB of memory. The newly acquired plant disease 

collection comprises 87,000 photos depicting both infected and healthy crops. The whole 

dataset is categorised into 38 distinct groups.The study employs measurements such as 

specificity, accuracy, and sensitivity to evaluate performance.  

The following approaches are utilised: Support Vector Machines (SVM), Artificial 

Neural Networks (ANN), AlexNet with transfer learning, K-Nearest Neighbours (KNN), 
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Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-column Convolutional Neural 

Network (MCNN), Genetic Algorithm-tuned Adaptive Feature Extraction System (GA-tuned 

AFES), Cuckoo Search Optimization-tuned Adaptive Feature Extraction System (CSO-tuned 

AFES), and Harris Hawks Optimization-tuned Adaptive Feature Extraction System (HHO-

tuned AFES). 

5.1.Experimental analysis 

The outcomes obtained from samples of the the grape data set, the tomato data set, and Corn 

datasets are shown in Figure 4, 5, and 6 correspondingly. The LDTP and LDEP techniques are 

used to extract the appropriate characteristics from the input signals. These features are then 

inputted into the FKO-AFES model to accurately determine the presence of disease in the plant. 

 

(a)                             (b)                                  (c) 

Figure 5. Analysis of Grape dataset a) sample input b) LDTP output c) LDEP output  

   
(a)                                                                                           (b)                                               (c) 

Figure 6. Analysis of tomato dataset a) sample input b) LDTP output c) LDEP output  
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(a)                                 (b)                                      (c) 

Figure 7. Analysis using Corn dataset a) sample input b) LDTP output c) LDEP  output 

The comparison analysis is determined by altering the K-fold and training percentage. The 

dataset pertaining to Corn, Grape, along with Tomato is employed for comparative analysis. 

6.Results and Discussion 

6.1.Using Grape dataset 

6.1.a.Analysis of training percentages using Grape dataset 

Figure 8 shows Grape dataset comparisons by training %. It is shown that the FKO-AFES 

model is more accurate than competent approaches. For instance, the KNN model obtains its 

highest efficiency at 80% of training, 81.6350%, whereas the suggested model achieves 

94.4100%, a 13.5314% increase. 

The standard KNN model has the best sensitivity at 80% of training 85.3393%, while the FKO-

AFES-based disease detection model has the highest accuracy at 94.1094%. This reveals that 

FKO-AFES outperforms KNN by 9.3190%. 

The FKO-AFES model's specificity peaks at 95.6548 % during 80% training. However, the 

typical KNN model has 79.3580% maximum specificity. This shows that the FKO-AFES 

model improves 17.0371%. 

  
a) b) 
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c) 

Figure 8. Training percentage analysis using grape dataset a) accuracy, b) sensitivity, 

and c) specificity 

6.1.b. K-fold analysis for grape dataset 

In figure 10 a), b), and c), the K-fold value is varied to compare the three parameters using a 

grape dataset. The graphic shows that the suggested model is more accurate than standard 

techniques. The KNN model has the greatest accuracy at K-fold 10, 83.613%, whereas the 

suggested model has 96.1793%, a 13.0648% performance gain. 

The classic KNN model has the greatest sensitivity at K-fold 10 of 87.9602%, whereas the 

suggested FKO-AFES-based disease prediction model has the highest accuracy of 96.4859%. 

This reveals that the FKO-AFES model outperforms the KNN model by 8.8361%. 

Specificity for the FKO-AFES model peaks at 96.8345% at K-fold 10. However, the standard 

KNN model has 81.2669% maximum specificity. The suggested FKO-AFES model improves 

performance by 16.0765%. 

6.2.Using Tomato dataset 

6.2.a.Training percentage analysis using tomato data 

Figure 9 shows a tomato dataset comparison of training percentages. Figure shows that the 

suggested FKO-AFES model is more accurate than competent techniques. For instance, the 

KNN model has the greatest efficiency at 80% of training, 83.8350%, whereas the suggested 

model has 96.0302%, a 12.6993% performance gain. 

Sensitivity is best for the classic KNN model at 80% of training 80.3416%, whereas accuracy 

is highest for the suggested FKO-AFES-based disease detection model at 96.5349%. This 

reveals that the FKO-AFES model outperforms the KNN model by 16.7745%. 

Specificity for the FKO-AFES model peaks at 96.4859 % at 80% training. The standard KNN 

model has 88.8020% maximum specificity. This shows that the FKO-AFES model improves 

performance by 7.9637%. 

  
a) b) 
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c) 

Figure 9. Training percentage analysis using tomato dataset a) accuracy, b) sensitivity, 

and c) specificity 

6.2.b. K-fold analysis using the grape dataset 

In figure 10 a), b), and c), the K-fold value is varied to compare the three parameters using a 

grape dataset. The graphic shows that the suggested model is more accurate than standard 

techniques. The KNN model has the greatest accuracy at K-fold 10, 85.3598%, while the 

suggested model has 98.1357%, a 13.0184% performance gain. 

The classic KNN model has the greatest sensitivity at K-fold 10 of 87.9602%, whereas the 

suggested FKO-AFES-based disease prediction model has the highest accuracy of 96.4859%. 

This reveals that the FKO-AFES model outperforms the KNN model by 8.8361%. 

The FKO-AFES model has a maximum specificity of 81.9038% at K-fold 10. The standard 

KNN model has 98.4851% maximum specificity. This shows that the FKO-AFES model 

improves performance 16.8363%. 

  
a) b) 

 
c) 

Figure 10. K-fold analysis using tomato dataset a) accuracy, b) sensitivity, and c) 

specificity 

6.3. Using corn dataset 

6.3.a.Analysis of training percentages using Corn data 

Figure 11 illustrates the comparative analysis of the maize dataset by varying the training %. 

The figure 11 a) displays a comparative comparison regarding correctness. The suggested 

model demonstrates a greater level of accuracy compared to standard approaches. As an 
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example, the KNN model achieves its highest accuracy of 80% during training. The maximum 

accuracy of the KNN model is determined to be 70.4232%. On the other hand, the suggested 

model achieves a maximum accuracy of 94.6055%, indicating a performance improvement of 

25.56%. 

Regarding sensitivity, the conventional KNN model achieves its greatest value at 80% of 

training, namely 77.5518%. On the other hand, the suggested FKO-AFES-based plant disease 

model achieves a maximum accuracy of 92.9672%. This demonstrates that the suggested FKO-

AFES model exhibits a performance enhancement of 16.5815% when compared to the KNN 

model. 

The suggested FKO-AFES model achieves an exceptional specificity of 98.1945% for 80% of 

the training period. Nevertheless, the standard KNN model has a maximum specificity of 

64.4596%. The suggested FKO-AFES model achieves a performance improvement of 

34.3646%. 

  
a) b) 

 
c) 

Figure 11. Training percentage analysis using corn dataset a) accuracy, b) sensitivity, 

and c) specificity 

6.3.b. K-fold analysis with the corn dataset 

Figure 12 a), b), and c) illustrate the comparative study of sensitivity, specificity, as well as 

accuracy by altering the K-fold value using a maize dataset. The suggested model demonstrates 

a greater level of accuracy compared to standard approaches. For example, the K-nearest 

neighbours (KNN) model has the best accuracy when using a 10-fold cross-validation, with a 

maximum accuracy of 71.1523%. In contrast, the suggested model achieves a maximum 

accuracy of 96.8661%, showing an improvement of 26.54%. 

The classic KNN model achieves a sensitivity of 77.8017% at K-fold 10, whereas the suggested 

FKO-AFES-based plant illness model achieves a maximum accuracy of 94.3242%. This 

demonstrates that the suggested FKO-AFES model has a 17.5167% enhancement when 

compared to the KNN model. 
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The FKO-AFES model achieves a maximum specificity of 99.00% at K-fold 10. Nevertheless, 

the standard KNN model achieves a maximum specificity of 66.4596%. The FKO-AFES model 

achieves a 32.8690% improvement. 

  
a) b) 

 
c) 

Figure 12. K-fold analysis using corn dataset a) accuracy, b) sensitivity, and c) 

specificity 

6.4.Comparative analysis: 

This section provides a detailed analysis of the outcomes achieved via the methodologies used 

in the detection of plant leaf diseases.   

Table 1. Comparative analysis of Existing Methods with the Proposed Approach for Corn 

Dataset  

Methods Accuracy Sensitivity Specificity 

Training 

percentage 

(80%) 

K-fold Training 

percentage  

K-fold Training 

percentage 

K-fold 

KNN 70.4232 71.15232 77.55188 77.80171 66.45968 64.45031 

SVM 72.7361 74.19295 81.72288 82.96141 66.73076 64.89039 

ANN 73.9436 74.86482 82.89485 84.06052 67.06944 66.30558 

AlexNet + 

transfer 

learning 74.5474 75.84902 83.48084 84.28767 68.95006 66.93278 

ANFIS 76.3047 77.36416 85.24191 86.14841 70.10118 69.03717 

MCNN 91.7329 94.01794 90.59865 92.08802 95.61328 94.54918 

GA tuned 

AFES 92.4459 94.72729 91.47108 93.04214 96.58347 95.46854 

CSO tuned 

AFES 93.1588 95.44024 92.08372 93.11615 97.49148 96.3879 

HHO tuned 

AFES 93.8718 96.15687 92.4313 93.63191 98.33554 97.30726 

FKO-

AFES 94.6055 96.86614 92.96727 94.32425 99 98.19453 
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The techniques used for comparison include ANN, SVM, KNN, AlexNet with transfer 

learning, ANFIS, MCNN, AFES with GA tuning, AFES with CSO tuning, and AFES with 

HHO tuning. The assessment is conducted using three datasets: Corn, Grape and Tomato.  

Table 2. Comparative analysis of Existing Methods with the Proposed Approach for 

Grape Dataset  

Methods Accuracy Sensitivity Specificity 

Training 

percentage 

(80%) 

K-fold Training 

percentage  

K-fold Training 

percentage 

K-fold 

KNN 81.635 83.6137 85.33933 87.96022 79.35802 81.26693 

SVM 82.38846 84.58899 85.81942 88.15476 80.32274 82.9877 

ANN 83.72089 85.86874 87.01711 89.15571 81.96463 84.35217 

AlexNet 

+ transfer 

learning 84.94035 88.36284 89.09529 91.56205 83.94059 86.93188 

ANFIS 89.5035 88.64398 90.60663 92.13953 89.29541 87.0181 

MCNN 91.39878 93.05351 91.63784 94.01434 92.07372 93.02322 

GA tuned 

AFES 92.15663 93.80014 92.25573 94.63223 92.9791 93.90606 

CSO 

tuned 

AFES 92.77597 94.54678 92.87362 95.25012 93.60607 94.7889 

HHO 

tuned 

AFES 93.65727 95.29341 93.49151 95.86801 94.75959 95.67174 

FKO-

AFES 94.41009 96.17935 94.1094 96.4859 95.65488 96.83458 

 

The results are shown in Tables 1, 2, and 3, respectively. To conduct training percentage 

analysis, the training percentage is adjusted within the range of 40% to 80%. The value of K in 

K-fold analysis is changed within the range of 5 to 10. The research demonstrates that the 

suggested model has the maximum performance in terms of sensitivity, specificity, as well as 

accuracy when trained with 80% of the data and using a value of k=5.  

Table 2. Comparative analysis of Existing Methods with the Proposed Approach for 

Tomato Dataset  

Methods Accuracy Sensitivity Specificity 

Traing 

percentage 

(80%) 

K-fold Training 

percentage  

K-fold Training 

percentage 

K-fold 

KNN 83.83501 85.35987 80.34158 81.90386 88.80204 90.287 

SVM 84.02561 86.37921 80.60642 82.78749 88.82231 91.55891 

ANN 85.38452 86.70553 81.73136 83.01704 90.63794 92.08611 



Manjiri U. Karande et al. 359 

 

Migration Letters 

AlexNet + 

transfer 

learning 86.26011 87.57947 82.48023 83.90508 91.75555 93.05973 

ANFIS 87.23219 88.83866 83.18473 85.08353 92.88552 94.5221 

MCNN 93.08914 95.0833 93.99478 95.96238 93.1144 95.15506 

GA tuned 

AFES 93.73639 95.84637 94.63346 96.59307 93.77669 96.05813 

CSO tuned 

AFES 94.50101 96.60943 95.26727 97.22376 94.67976 96.9612 

HHO 

tuned 

AFES 95.26563 97.3725 95.90109 97.85446 95.58283 97.86427 

FKO-

AFES 96.03025 98.13557 96.5349 98.48515 96.4859 98.76734 

 

Based on the discussion, it is evident that the suggested model achieves superior performance 

as a result of the effective development of the ANFES classifier using the FKO method. 

CONCLUSION 

Forecasting plant diseases is an essential undertaking in precision agriculture as it facilitates 

the mitigation of the dissemination of plant leaf diseases. An adaptable fuzzy expert system is 

used in the development and analysis of a plant disease forecasting technique that is enabled 

by the Internet of Things (IoT). The illness prediction model based on AFES assures optimal 

performance by integrating the features acquired by approaches such as LDTP, MTP, and 

LDEP. In addition, the adjustable parameters used in the fuzzification and de-fuzzification 

layers are calibrated using the suggested Fighter Kitten optimisation technique, hence 

enhancing the precision of the outcome while minimising the loss function. The experimental 

findings indicate that the proposed FKO-AFES achieves a performance increase of 26.54%, 

17.5617%, and 32.8690% compared to the current KNN model when applied to the maize 

dataset. However, the pattern recognition ability of the AFES used in the study is somewhat 

lower compared to that of the neural network. Moreover, the training of the AFES model is a 

laborious procedure that amplifies the temporal complexity. Therefore, in order to address these 

problems in the future, ensemble learning techniques that can accurately identify patterns and 

require little training time will be used to improve the performance of predictive models. 
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