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Abstract 

The Support Vector Machines is the pre-eminent methodology in supervised machine 

learning, is adeptly applied to classification tasks and extends its utility to regression 

challenges. SVMs endeavour to discern the optimal hyperplane for dichotomizing data into 

distinct classes. When confronted with clustered non-linearly separable data, the Nonlinear 

mapping function approach emerges as a strategic solution to enhance computational 

efficiency. By employing mapping functions, data is mapped into a feature space, thus 

revealing a discernible linear decision boundary for the categorization of non-linear data. 

In our research, the objective is to transmute clustered non-linearly separable data into a 

linearly separable format through developing the nonlinear mapping functions. We have 

illustrated an example in classifying the clustered nonlinear synthetic data which was 

generated using Generative Adversarial Network (GAN), enabling nonlinear models to 

adeptly represent the vector similarities within the feature space. Through the identification 

of nonlinear mapping functions denoted as Φ, the data undergoes transformation into a 

novel feature space where the discernment of the hyperplane separation becomes apparent. 

This nuanced approach not only provides a deeper understanding of the internal mechanics 

of these models but also facilitates the assessment of the pertinence of feature 

combinations. 

 

Keywords: Kernel trick, Feature Space, SVM, Nonlinear Separable data, Nonlinear 

mapping functions.1 

 

Introduction 

SVM has emerged as the preferred tool for a multitude of machine learning researchers. 

Renowned for its exceptional classification accuracy, SVM consistently surpasses 

alternative classification techniques in various applications. In text categorization, SVM 

excels at discerning patterns within vast amounts of textual data. Its adaptability also 

extends to object detection, microarray gene expression data analysis, and diverse data 

classification tasks. One of the defining attributes of SVM is its knack for outperforming 

other supervised learning techniques. Research consistently highlights the superiority of 

SVM in terms of classification accuracy, making it a reliable choice for applications where 

precision and reliability are paramount. The capacity of SVM to navigate complex, high-
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dimensional feature spaces, especially with the aid of the kernel trick, contributes to its 

success in scenarios where traditional approaches may fall short. Its consistent 

outperformance in comparison to other supervised learning techniques underscores its 

significance and positions it as a cornerstone in advancing the capabilities of machine 

learning systems. As the digital landscape continues to evolve, SVM's versatility and 

accuracy make it an indispensable asset for researchers and practitioners alike. [2]. 

However, the settings of the cost parameter and kernel parameters, particularly for specific 

datasets, can have a significant impact on the performance of SVM. So, the user must 

perform extensive cross validation, also known as model selection, to determine the best 

parameter value. Iterative testing of various SVM algorithm settings, such as the number 

of training samples, the Gaussian kernel, the corresponding weights for slack variables to 

manage the non-uniform distributed of labelled data, and the choice of kernel functions, 

are required to select a model. The outcomes could change as a result of certain parameters. 

One needs to have a fundamental understanding of support vector machines before diving 

into the concept, theories, and methodologies of SVM [1]. A conventional two-

classification model called the Support Vector Machine (SVM) finds an appropriate 

hyperplane to partition the acquired data samples. To solve a given quadratic programming 

problem, the division's goal is to maximize the margin (including hard and soft margins). 

Based on the amount of the data, the suitable solution space is chosen, and the dual space 

solution is converted into the original space's classification surface before being split into 

three groups for calculation. An essential component of the Support Vector Machine 

application's working mechanism is its feature structure [3][4]. The theory behind the 

Support Vector Machine (SVM) algorithm is solid, and it has good generalization 

capabilities. It has drawn a lot of interest from academics both locally and abroad, resulting 

in ongoing research that has led to advancements. By the use of risk reduction principles, 

SVM, which is founded on the idea of small sample machine learning, successfully 

addresses issues including limited sample sizes, nonlinearity, and high dimensionality 

while preserving a minimal requirement for prior knowledge [5][10]. For networks with 

intrusion detection systems, the classification precision is ideal. It can be challenging to 

choose the right kernel function in real-world projects to make the training set linearly 

separable in the feature, despite the kernel function presupposes that the observations that 

must be trained match the linearly separable criteria in the feature space [7]. It is essential 

to use a nonlinear model for accurate classification of nonlinear problems because the linear 

separable Support Vector Machine could indeed handle them [6][12]. A symmetric 

function connected to a semi-positive definite kernel matrix is referred to as a "kernel 

function." Because when feature space is elevated and linearly separable, support vector 

machines operate at their best, however the feature space is heavily influenced by the kernel 

function selected. However, choosing the appropriate kernel function is crucial because it 

just specifies the feature space implicitly and it is uncertain how it maps the sample. The 

sample might be mapped to the incorrect feature space if the improper kernel function is 

selected, which would result in subpar performance and prevent the desired result from 

being realized [7]. A classification task is one that involves dividing two groups of things 

based on the traits they share. This problem can be completed using a variety of techniques, 

including Support Vector Machines (SVMs) [11]. A novel instance-based big margin 

classification technique called SVMs uses a collection of predefined functions to infer an 

implicit decision boundary [8]. There is a set of hyperplanes for Semi-Consistent 

Hyperplanes (SHs) that correctly classifies all of the data objects. With regard to the data, 

these hyperplanes are referred to as semi-consistent hyperplanes. The separable scenario, 
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in which the classes are precisely divided by a hyperplane, serves as the starting point for 

the consideration of SHs. Finally, utilizing kernels and slack variables in a manner akin to 

the Support Vector Machine (SVM) technique, the non-separable issue is addressed. [6][8]. 

 

Literature Review  

 

Piccialli, V et al., used the optimization of SVM performance transcends the mere 

application of a powerful algorithm, it requires a thoughtful and informed exploration of 

its parameter space. Through an iterative and informed process of model selection, where 

users can unlock the true potential of Support Vector Machines, adapting them to the 

intricacies of specific datasets and harnessing their capabilities for accurate and robust 

predictions in diverse scenarios [1]. 

Borah, P et al., proposed the combination of kernel trick, coupled with the exceptional 

capabilities of the Support Vector Machine, has positioned SVM as a standout tool in the 

machine learning landscape. Its ability to consistently outperform other supervised learning 

techniques across diverse applications underscores its significance and cements its 

reputation as a go-to solution for discerning patterns and making informed classifications 

in the ever expanding world of data analysis [2]. 

Gupta D and Borah P., proposed pivotal aspect of the SVM's functioning which is the 

selection of a suitable solution space based on the characteristics of the data. The dual space 

solution, derived from the quadratic programming problem, undergoes a transformation 

process. It is converted from the dual space into the original space, ultimately shaping the 

classification surface that segregates the data into its respective classes. The interplay 

between feature structures, solution spaces, and the classification surface forms the intricate 

separation that allows SVM to navigate and make sense of diverse datasets, making it a 

formidable tool in the arsenal of machine learning practitioners [3]. 

Gangopadhyay A et al., commenced with Support Vector Machine which was particularly 

renowned for its ability to establish a decision boundary in the data space through the 

identification of an optimal hyperplane. This hyperplane, a key element of the SVM's two-

classification model, serves as the linchpin for partitioning acquired data samples into 

distinct classes. The SVM's objective is not merely classification but the identification of 

an appropriate hyperplane that maximizes the margin a critical concept encompassing both 

hard and soft margins [4]. 

Nalepa, J., & Kawulok, M., used one of the distinctive features that contribute to SVM's 

enduring appeal is its reliance on risk reduction principles. SVM operates on the 

fundamental concept of small sample machine learning, allowing it to navigate and extract 

meaningful insights from datasets with limited sample sizes. Beyond sample size 

constraints, SVM excels in addressing nonlinearity within data. Through the clever use of 

kernel functions, SVM can implicitly map data into higher-dimensional spaces, unravelling 

intricate patterns that may not be discernible in the original feature space. This nonlinear 

adaptability broadens the applicability of SVM to a diverse range of problems where 

complex relationships exist [5]. 

Lou, Y et al., Stated that while the linearly separable Support Vector Machine has its merits, 

acknowledging its limitations in handling nonlinear problems is essential, particularly in 

the domain of network intrusion detection. The selection of an appropriate kernel function 

becomes a strategic decision, influencing the algorithm's ability to accurately classify 

complex, real-world patterns. By embracing the nonlinear capabilities of SVM, 
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practitioners can enhance the precision of intrusion detection systems, ensuring a more 

robust defence against the evolving landscape of network threats [6]. 

Xingning, L et al., highlighted Support Vector Machines, which represents a novel and 

powerful approach to classification tasks. One distinctive feature that sets SVMs apart is 

their utilization of a novel instance-based big margin classification technique. Unlike some 

traditional methods that rely on proximity or probability estimates, SVMs introduce the 

concept of a margin which gives a clear separation between different classes. These 

functions facilitate the transformation of data into higher-dimensional spaces, revealing 

hidden patterns and allowing for the establishment of decision boundaries that may be 

intricate or nonlinear [7]. 

 

Preliminaries 

 

Kernel trick in Support Vector Machine  

 

The kernel trick is a transformative concept in the realm of Support Vector Machines 

(SVMs), amplifying their effectiveness in handling complex, nonlinear patterns within 

data. At its core, SVMs are known for constructing optimal hyperplanes in a high-

dimensional feature space, aiming to separate different classes. However, many real-world 

datasets exhibit intricate relationships that are not linearly separable in the original feature 

space. This is where the kernel trick comes into play. The kernel trick is a technique that 

enables SVMs to implicitly map input data into higher-dimensional spaces, revealing 

nonlinear patterns without the need to explicitly compute the transformation. Instead of 

dealing with the computational burden of operating directly in the higher-dimensional 

space, the kernel function allows SVMs to compute the dot product between data points in 

this space efficiently. Commonly used kernel functions include the linear kernel for linearly 

separable data, the polynomial kernel for capturing polynomial relationships, and the radial 

basis function kernel for handling intricate, nonlinear patterns. These kernels effectively 

introduce a measure of similarity or distance between data points in the transformed space, 

enabling SVMs to discern complex structures and make accurate classifications. The kernel 

trick not only enhances the adaptability of SVMs to diverse datasets but also contributes to 

their ability to generalize well. This technique has found applications in various fields, 

including image recognition, bioinformatics, and natural language processing. The 

function, designated as K(x1, x2), has a few properties and is an inner product of x1 and 

x2 in a higher-dimensional space. To handle inner products between observations in the 

defined spaces of the kernel function, these functions are utilized in the kernel trick 

[2][7][8]. 

Finding the plane that can separate, classify, or split the data with the most margin is the 

fundamental tenet of SVM and Kernel Trick. Street width is another name for the margin. 

The separation measure from a point ( )00 , yx  to a line Ax + By + c = 0 is  

0
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 The total distance between 1H and 2H  is thus 
W

2
……………………………...     (3) 

To achieve the better and maximum distance of ||w|| with no data points existing in between

1H and 2H 1. ++ bWxi  when 1+=iy  and 1. −+ bWxi  when 1−=iy the 

combined equation can be written as, ( ) 1. Wxy ii . 

 

 
Fig 1: Kernel Trick 

 

By maximizing the distance between support vectors, which are the nearest data points to 

the hyperplane that influence its position and orientation, SVM aims to maximize the 

margin or street width. This is accomplished by a constrained optimization procedure, in 

which the input values are chosen from among those that are permitted in order to determine 

the function's value. The requirement is that the support vectors must not be on, between, 

or near the street. Thus, the SVM optimization issue is an example of a restricted 

optimization problem [12]. 

 

Kernel trick for Separable data and Non-linear Separable data  

 

A unique mathematical characteristic of the kernel function functions as a revised dot 

product. A linear boundary can be created in the higher dimensional space to demarcate the 

classes. The kernel trick is a machine learning method for dealing with non-linearly 

separable data. The transformed data can then be applied to the linear classifier to separate 

it, and the outcome of the discriminator in the high-dimensional space can be transmogrified 

back into the space to obtain the final result. It facilitates the application of a linear approach, 

such as the Support Vector Machine (SVM) algorithm, are applied to non-linear data by 

converting them to the new higher dimensional space where the data becomes linear data 

set. We have seen that raising the dimensionality of the data can help with precise 

categorization predictions. It is necessary to carry out operations with the modified feature 

vectors in high dimensions in order to train a support vector classifier and improve its 

performance. The compute cost of executing transformations requiring polynomial 

combinations of these features, however, might become excessively large and impractical 
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when working with real-world data that has a lot of features by transforming the information 

into a more dimensional space that is suitable for classification and then applying the 

standard algorithm to this transformed data, the kernel method, in principle, enables a linear 

algorithm to handle non-linear data [10]. 

 

 
        Fig 2: Linear Separable data                       Fig 3: Nonlinear Separable data 

 

When training a support vector classifier, the problem of high computing costs can be 

avoided using the kernel method. Kernel approaches merely describe the data through 

pairwise similarity comparisons between the observations, rather than explicitly 

performing modifications to the original data observations and representing the data in a 

higher dimensional space. Each item (i,j) in a kernel matrix of size n x n containing these 

comparisons is defined by the kernel function K. (xi,xj). By avoiding the requirement for 

explicit feature transformations, this method lessens the computational load. By translating 

non-linearly separable data into a higher dimensional space where it is linearly separable, 

the kernel trick is a machine learning technique for dealing with such data. The data is 

mapped into a new space using a kernel function so that a linear technique can be used to 

separate it. The kernel function separates binary classification issues by acting as a 

modified dot product and having a unique mathematical property. The results are then 

translated back into the original space to obtain the final result after the data has been 

separated in the high-dimensional space [3][7]. 

 

Proposed System 
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Fig 4: Structure of Proposed System 

 

Fig 4 represents the structure of our proposed system. Collecting and pre-processing the 

data is the first step, here we collect data and pre-process it by cleaning and transforming 

it into a format suitable for SVM. The process begins with the representation of data points 

in a 2D space, utilizing the x and y axes to denote the features of the data. To navigate 

nonlinear patterns within the data, a nonlinear mapping function is selected based on the 

inherent characteristics of the dataset. This chosen transformation function facilitates the 

conversion of the data into a feature space where classes can be effectively separated by a 

hyperplane. The SVM model is then trained on this pre-processed data, aiming to find a 

hyperplane that maximizes the margin between the two classes within the feature space. 

This optimized hyperplane becomes instrumental in classifying new data points based on 

their features. In essence, the SVM's primary objective is to discover a decision boundary 

that optimally distinguishes positive and negative data points while maximizing the margin 

between these classes. The performance of the SVM model is subsequently assessed using 

weighted vectors, providing a comprehensive evaluation of its classification capabilities. 

Positive data points are labelled as +1 and negative data points are labelled as -1.  

The hyperplane is represented as, 022110 =++ xwxww                                   (4)                                                               

Where w0, w1, and w2 are the parameters of the hyperplane, x1 and x2 are the features of a 

data point, and with the bias term. The sign of the equation indicates the class of the data 

point. If the equation is positive, the data point is classified as positive (+1), and if the 

equation is negative, the data point is classified as negative (-1). 

 

Methodology 
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We intend to categorise the non-linear separable data by transforming data sets to new 

feature space and applying SVM methods. Here, we handle a sizable data set using the 

nonlinear transformation method, which enables nonlinear models to express the similarity 

of vectors in the feature space. Non-linear separable data are a group of data that cannot be 

separated linearly and are not organised in a sequential manner. If all of the data are 

correctly classified throughout the separation process, we refer to it as a hard support vector 

machine otherwise, it is referred to as a soft support vector machine and is also known as 

partial nonlinear separable data. First, by identifying the most appropriate function to 

categorise the non-linearly separable data, we transform them to linearly separable data 

using the fundamental expansion approach. We start by creating the hyperplane for 2-

dimensional space, the hyperplane for the 2D space is a 1-dimensioanl straight line. We 

execute the data transformation of the 2D space using transformation equation. Utilizing 

an appropriate function becomes essential to transition the data points into an alternative 

feature space. Our primary goal is to make a hyperplane that accurately separates the two 

classes, a task that proves challenging within the confines of the input space. In instances 

where a straightforward hyperplane is not discernible, the application of a nonlinear 

separable Support Vector Machine becomes imperative to facilitate the transformation of 

data from one feature space to another. Consider a scenario where the input space lacks a 

readily apparent hyperplane for accurate class distinction. In such non-trivial cases, 

envision a set of R2 data points featuring both positive and negative labels. To effectively 

handle this complexity and navigate nonlinear patterns inherent in the data, the deployment 

of a nonlinear SVM becomes necessary. This nonlinear SVM incorporates a mapping 

function that transforms input space into a feature space, providing the means to accurately 

represent and classify nonlinear data points. We can observe how modifies our data before 

to doing the dot products in order to construct the hyperplane. As a result, the data can be 

rewritten in feature space. The support vectors can be found as a further step. Consequently, 

we include bias input vectors that have been increased by 1 and discover values for the αi. 

 

Implementation and Analysis 

An SVM model can be trained on a dataset of labelled clustered nonlinear data set samples 

using a binary classification method, where each sample is categorized as either dangerous 

or benign. Based on variables retrieved from the training dataset, such as file size, 

frequency of file access, and existence of particular code snippets, the SVM model learns 

to categories fresh samples. Different samples of data that are divided into the two classes 

"Infected" and "Non-infected" are represented by two-class data points. The attributes of 

each data point in the dataset, which each represent a file or an action, are derived from 

different sources, such system logs, network traffic, or file properties.  The SVM model is 

trained to distinguish between Nonlinear data samples by examining these attributes, and 

it can then categories new data points appropriately. By recognizing and preventing 

malicious files or activities, this can assist in detecting and preventing anonymous assaults. 

Here we have illustrated the clustered non-linearly separable data related to infected and 

non-infected classification. We utilized Generative Adversarial Networks (GAN) to 

generate data, demonstrating the application of concepts and an evolved equation. This 

illustrates that the nonlinear equation efficiently transforms data into a new feature space 

without altering the dimension of the original dataset. This reduction in complexity 

facilitates the transformation of classification, making it more straightforward to identify a 

hyperplane for distinct classification in clustered nonlinear datasets. 



Pavithra C et al. 909 

 

Migration Letters 

The data consists of 300 observations of the number of hours of use and the number of 

crashes of nonlinear separable data. The class label indicates whether the data is considered 

"harmful/Infected" (class 1) or "non-harmful/Non-Infected" (class 0). However, when we 

plot the data as a scatter plot, we see that it's not possible to draw a straight line that 

separates the two classes. This means that the data is not linearly separable and a more 

sophisticated algorithm, such as a non-linear classifier, would be needed to separate the 

two classes effectively. 

 

Algorithm 1: Input Space 

 

Input: Input space (Class1 and Class2). 

Output: Plot the points as a scatter plot. 

 

Step 1: Two arrays "x" and "y" that represent two sets of points in the 2D space. 

Step 2: Pass "x" as x-coordinate, "y" as y-coordinate, and "green" as color. 

Step 3: Set x-axis label as "X" using "plt.xlabel" method.. 

Step 4: Set y-axis label as "Y" using "plt.ylabel" method 

Step 5: Set the title of the plot as "Clustered Nonlinear data points" using "plt.title. 

Step 6: Show the plot using plt.show(). 

 

The algorithm begins by taking two arrays, "x" and "y," representing coordinates in a 2D 

space, as input, where each array corresponds to a different class (Class1 and Class2). The 

primary objective is to create a scatter where points from Class1. The algorithm 

accomplishes this by passing the "x" array as x-coordinates, "y" array as y-coordinates, in 

the plt.scatter method. Furthermore, axis labels are set using corresponding codes to denote 

the x and y dimensions, respectively. The plot is then given a title, "Clustered Nonlinear 

data points," using plt.title for clarity. The final step involves displaying the plot with 

plt.show(). This algorithm proves useful for visually inspecting and comprehending the 

distribution and clustering patterns of nonlinear data points in a 2D space, providing 

valuable insights into the characteristics of the underlying data. 

 
Fig 5: Input Space 
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Fig 5 represents the set of nonlinear data points, for the above set of nonlinear data sets, we 

form the desirable function to convert the nonlinear separable data points to linearly 

separable data points. Let us consider the mapping function, 
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Where, n is the highest values of corresponding class. 

Rn is the randomly chosen number, where Rn ˃ n.  

By using the above transformation equation, we convert the class 2 data set to another 

feature space and this becomes the linearly separable data sets. 

 

Algorithm 2: Transformed Feature Space 

 

Input:  Two sets of points (Class1 and Class2). 

Output: Plot the points as a Transformed Feature Space. 

 

Step 1: Import the required libraries, matplotlib.pyplot and numpy  

Step 2: Define two sets of points ‘points1’ and ‘points2’ as a list of x and y coordinates. 

Step 3: Store ‘x’ and ‘y’ as separate lists x1 and y1 for class 1, and x2 and y2 for class2. 

Step 4: Plot the scatter plot of ‘class1’ and ‘class2’ (color 'Blue' and color 'Red'). 

Step 5: Add labels to x and y axis using plt.xlabel and plt.ylabel. 

Step 6: Add a title to the plot using plt.title. 

Step 7: Show the plot using plt.show. 

 

 
Fig 6: Transformed Feature Space 



Pavithra C et al. 911 

 

Migration Letters 

 

Fig 6 represents the feature space with linearly separable data. The following are the 

equations obtained using the transformed equation to compute the three parameters α1, α2 

and α3. 

 

α1Φ1(s1). Φ1(s1) + α2Φ1(s2). Φ1(s1) + ……+αmΦ1(s2). Φ1(s1)   = −1                   …(6) 

 

 α1Φ1(s1). Φ1(s2) + α2Φ1(s2). Φ1(s2) +……+αmΦ1(s2). Φ1(s1) = +1                     …(7)     
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By solving for the above equation, we get α1, α2 and αm Subsequently, we compute 

discriminating decision boundary for the feature space. Where ẇ is presented as the 

weighted vector. 

ẇ = Xi αi ṡi                                                                                                                                                   

ẇ = .1 ṡ1+ 2 .ṡ2+ ……..+ m .ṡm                                                                                                      

The equation of the hyperplane is given as, y = ẇ x + b with ẇ and b. This gives the desired 

decision surface. 
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Algorithm 3: Scatter Plot with Hyperplane 

 

Input: Create two sets of points (Class1 and Class2). 

Output: Plot 2D scatter plot with Hyperplane. 

 

Step 1: Import the required libraries, matplotlib.pyplot and numpy  

Step 2: Extract the x and y coordinates for each set of points.  

Step 3:  Points1 are plotted as red circles and points2 are plotted as green circles.  

Step 4: Define the hyperplane parameters (weights "w" and bias "b") for set of x values to 

create hyperplane.  

Step 5: Calculate the corresponding y values for the hyperplane using the equation: y = - 

(w[0] * x_hyperplane + b) / w[1]  

Step 6: Plot the hyperplane using the calculated x and y values.  

Step 7: Label the x and y axis as "X" and "Y" respectively and add a title to the plot. 

Step 8: Display the plot using plt.show(). 

 

The exploration of transformed nonlinear data with a decision boundary represents a pivotal 

aspect of contemporary research in machine learning and data analysis. This approach 

acknowledges the inherent complexities in real-world datasets, where relationships 

between features and outcomes are often intricate and nonlinear. By undertaking a 

nonlinear transformation of the feature space, we enhance our ability to perform and 

understand these intricate relationships. 

By subjecting the feature space to nonlinear transformations, we empower our equation to 

capture and elucidate the nuanced patterns of data. This not only leads to more accurate 

predictions and classifications but also facilitates a richer comprehension of the underlying 

structures governing the observed phenomena. Consequently, the adoption of nonlinear 

transformations becomes indispensable to extract meaningful insights from dataset 

characterized by intricate and nonlinear relationships. 

 
Fig 7: Transformed feature space with Decision Boundary 
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Conclusion 

In this research we deploy Support Vector Machine for classification and regression. We 

create for the decision boundary that divides the features into different classes in the best 

way possible. Here we choose the support vectors, the points which are close to hyper 

planes. Finding the decision boundary for non-linear data categorization is made easier by 

the nonlinear transformation function. In this research paper, the identification of nonlinear 

mapping functions, denoted as Φ, plays a central role in transforming the data into a novel 

feature space, where the discernment of hyperplane separation becomes apparent. This 

nuanced approach not only deepens our understanding of the internal mechanics of these 

models but also facilitates a comprehensive assessment of the relevance of feature 

combinations. Our research contributes to advancing the application of SVMs in handling 

complex data patterns and underscores the significance of nonlinear mapping functions in 

achieving effective classification in the context of non-linearly separable data. 
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