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Abstract 

The optimization of coupled linear networks is a pervasive challenge with diverse 

applications across scientific and engineering disciplines. This study delves into recent 

research efforts aimed at enhancing the performance and efficiency of interconnected 

systems characterized by linear relationships. The pursuit of algorithmic advancements 

stands as a cornerstone in this domain, with researchers focusing on the development of 

existing algorithms capable of swiftly addressing extensive linear systems arising from 

network interactions. An emerging trend involves linear network optimization. The 

proposed approach seamlessly integrates insights from numerical linear algebra, 

optimization, and graph theory, leading to accelerated computations and heightened 

accuracy. This synergistic interplay paves the way for transformative applications in fields 

like telecommunications, signal processing, and control systems. The robust optimization 

of linear coupled networks addresses the inherent uncertainties and variations that affect 

network performance in real-world scenarios. 
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Introduction 

Logical estimation is a method that entails making educated predictions or approximations 

based on existing knowledge and sound reasoning rather than relying solely on empirical 

data or complex computations [1]. It is a valuable analytical approach employed in diverse 

domains, including mathematics, science, economics, engineering, and more. Recent 

research in the realm of logical estimation has concentrated on refining methodologies and 

enhancing the accuracy of predictions, while also considering ethical implications and real- 

world applications. One area of advancement pertains to algorithmic enhancements [2-5]. 

Researchers may be focused on devising novel algorithms that amalgamate logical 

reasoning with machine learning techniques. These algorithms could leverage historical 

data to make predictions in scenarios where direct data is limited or unreliable, effectively 

bridging gaps in information. Another avenue of exploration could involve Binary logical 

estimation. By integrating Bayesian statistical methods with logical reasoning, researchers 

might strive to produce more nuanced and probabilistic predictions [6,7]. This approach 

would permit the incorporation of prior beliefs and the ability to adapt estimates as fresh 

information becomes available, resulting in more adaptable and dynamic predictions. The 

interplay between causal inference and logical estimation is an emerging topic. 
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Researchers could be investigating how to effectively combine these two disciplines to 

estimate the effects of interventions or changes within intricate systems [8-10]. By 

identifying causal relationships and applying logical reasoning, researchers could offer 

insights into cause-and-effect dynamics. The integration of qualitative and quantitative data 

is an intriguing dimension of recent research in logical estimation. Developments in this 

area could lead to frameworks that seamlessly integrate these data mining concepts, 

enabling more comprehensive and accurate estimations. Ethical considerations in logical 

estimation are gaining attention. Recent research might emphasize transparency, fairness, 

and accountability in the estimation process. Ensuring that logical estimates are not only 

accurate but also ethically sound is becoming a significant focus, particularly as these 

estimates influence decision-making. In the realm of expert elicitation and aggregation, 

researchers may be working to enhance the methodologies employed to elicit estimates 

from experts and to aggregate these opinions effectively. The goal is to devise approaches 

that address uncertainty and biases inherent in expert judgments, resulting in more reliable 

and robust estimates. Logical estimation also finds application in tackling real-world 

challenges. Researchers could be using this method to forecast outcomes related to climate 

change, pandemic trends, economic shifts, and more. As these challenges become 

increasingly complex and multifaceted, logical estimation offers a valuable tool for making 

informed predictions [11,12]. 

Logical optimization refers to the process of systematically finding the best possible 

solution to a problem by employing logical reasoning and structured methodologies [13]. 

This approach involves leveraging logical deductions and principles to optimize a system 

or process, often with the aim of maximizing desired outcomes while minimizing 

undesirable ones. Recent research in the realm of logical optimization has led to the 

development of advanced techniques, novel applications, and the exploration of ethical 

considerations. One significant area of advancement in logical optimization involves 

algorithmic innovations. Researchers have been focused on devising efficient algorithms 

that harness logical principles to solve complex optimization problems. These algorithms 

may incorporate elements of artificial intelligence, machine learning, or constraint 

programming to navigate intricate solution spaces and reach optimal or near-optimal 

outcomes [14,15]. 

 The integration of logical optimization with real-world applications is another noteworthy 

aspect of current research. From supply chain management to energy level efficient 

distribution and urban planning, logical optimization techniques are being applied to solve 

intricate problems faced by cloud servers. By employing logical reasoning to model real-

world scenarios, researchers can formulate strategies for optimizing resource allocation, 

scheduling, and decision-making processes. Ethical considerations play a vital role in the 

field of logical optimization [16]. Recent research delves into the ethical implications of 

using optimized solutions, particularly in scenarios where competing objectives or values 

must be balanced. Ensuring that optimized solutions are fair, unbiased, and aligned with 

societal values is a critical aspect of advancing this field responsibly. 

Simulation of Linear Coupled Networks 

The performance of linear coupled network having 5, 6 and 7 nodes in different architecture 

are simulated using NS2 tool in this work. 

Example 1 

Consider the following linear network with 5 nodes, N0, N1, N2, N3 and N4. Three types 

of architecture are considered as shown in Fig 1(a), Fig 1(b) and Fig 1(c). 
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Figure 1a: Network with 5 nodes in linear architecture 

From simulation, it is inferred that nodes N1, N2, N3 forms the dominant nodes in Fig 1(a) 

and Figure 1(b) as these nodal values highly impact the Transmission Efficiency (TE). 

Table 1a: Efficiency Table for the network with 5 nodes 
N0 N1 N2 N3 N4 TE (%)  

N0-N4  

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 1 1 0 

0 0 1 0 0 0 

0 0 1 0 1 0 

0 0 1 1 0 0 

0 0 1 1 1 0 

0 1 0 0 0 0 

0 1 0 0 1 0 

0 1 0 1 0 0 

0 1 0 1 1 0 

0 1 1 0 0 0 

0 1 1 0 1 0 

0 1 1 1 0 0 

0 1 1 1 1 0 

1 0 0 0 0 0 

1 0 0 0 1 19 

1 0 0 1 0 0 

1 0 0 1 1 59 

1 0 1 0 0 0 

1 0 1 0 1 65 

1 0 1 1 0 0 

1 0 1 1 1 87 

1 1 0 0 0 0 

1 1 0 0 1 35 

1 1 0 1 0 0 

1 1 0 1 1 89 

1 1 1 0 0 0 

1 1 1 0 1 71 

1 1 1 1 0 0 

1 1 1 1 1 100 
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Figure 1b: Network with 5 nodes in branched architecture 

In Figure 1b, the data from node 1 can travel in two ways via N2 and N3. The passing of 

data via N2 ends in N2 itself (will not provide any output) and the data through N3 goes to 

the output Node N4. 

Table 1b: Efficiency Table for the network with 5 nodes 
N0 N1 N2 N3 N4 TE (%) 

N0-N1-N3 – N4 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 1 1 0 

0 0 1 0 0 0 

0 0 1 0 1 0 

0 0 1 1 0 0 

0 0 1 1 1 0 

0 1 0 0 0 0 

0 1 0 0 1 0 

0 1 0 1 0 0 

0 1 0 1 1 0 

0 1 1 0 0 0 

0 1 1 0 1 0 

0 1 1 1 0 0 

0 1 1 1 1 0 

1 0 0 0 0 0 

1 0 0 0 1 26 

1 0 0 1 0 0 

1 0 0 1 1 72 

1 0 1 0 0 0 

1 0 1 0 1 36 

1 0 1 1 0 0 

1 0 1 1 1 82 

1 1 0 0 0 0 

1 1 0 0 1 66 

1 1 0 1 0 0 

1 1 0 1 1 100 

1 1 1 0 0 0 

1 1 1 0 1 78 

1 1 1 1 0 0 

1 1 1 1 1 92 
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From the Table 1a and 1b, it is inferred that the value of N3 decides the network efficiency 

to greater extent and is considered as Major node. 

 

Figure 1c: Network with 5 nodes in X- shaped architecture  

For the architecture shown in Figure 1(c), N0 is the dominant node since 4 different 1 hop 

network will be having this node N0 as a common point. 

Table 1c: Efficiency Table for the network with 5 nodes in X-shaped architecture  
N0 N1 N2 N3 N4 TE(%)  

     N1- N3 N2-N4 

0 0 0 0 0 0 0 

0 0 0 0 1 0 0 

0 0 0 1 0 0 0 

0 0 0 1 1 0 0 

0 0 1 0 0 0 0 

0 0 1 0 1 0 46 

0 0 1 1 0 0 0 

0 0 1 1 1 0 48 

0 1 0 0 0 0 0 

0 1 0 0 1 0 0 

0 1 0 1 0 0 0 

0 1 0 1 1 48 0 

0 1 1 0 0 0 0 

0 1 1 0 1 0 49 

0 1 1 1 0 46 0 

0 1 1 1 1 46 46 

1 0 0 0 0 0 0 

1 0 0 0 1 0 0 

1 0 0 1 0 0 0 

1 0 0 1 1 0 0 

1 0 1 0 0 0 0 

1 0 1 0 1 0 46 

1 0 1 1 0 0 0 

1 0 1 1 1 0 100 

1 1 0 0 0 0 0 

1 1 0 0 1 0 0 

1 1 0 1 0 100 0 

1 1 0 1 1 48 0 

1 1 1 0 0 0 0 

1 1 1 0 1 0 100 

1 1 1 1 0 100 0 

1 1 1 1 1 100 100 

From Table 1c, N0 decides the flow of data and hence it is the dominant as well as major 

node. It should be noted that whichever node comes with degree 4 (Here, N0) will be 
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dominant. The dominant node in general is represented as Ni where, i = 0,1,2,3,4. ( as 

discussed earlier). 

Example 2 

Consider the following linear network with 6 nodes, N0, N1, N2, N3, N4 and N5. Two 

types of architecture are considered as shown in Fig 2(a) and Fig 2(b). 

 

Figure 2a: Network with 6 nodes in 2 branch architecture 

From simulation, it is inferred that nodes N1, N3 forms the dominant nodes in Fig 2(a) and 

nodes N1, N2 and N4 forms the dominant nodes in Figure 2(b). Also, the nodes N2, N4 are 

split ends in Figure 2(a) and are not considered for TEcalculation. Similarly, node N3 is the 

split end in Figure 2(b). 

Table 2a: Efficiency Table for the network with 6 nodes  
N0 N1 N2 N3 N4 N5 TE (%)  

N0-N1-N3-N5 

0 0 0 0 0 0 0 

0 0 0 0 0 1 0 

0 0 1 0 1 0 0 

0 0 1 0 1 1 0 

0 1 0 1 0 0 0 

0 1 0 1 0 1 0 

0 1 1 1 1 0 0 

0 1 1 1 1 1 0 

1 0 0 0 0 0 0 

1 0 0 0 0 1 24 

1 0 0 0 1 0 0 

1 0 0 0 1 1 18 

1 0 0 1 0 0 0 

1 0 0 1 0 1 92 

1 0 0 1 1 0 0 

1 0 1 1 1 1 33 

1 0 1 0 0 0 0 

1 0 1 0 0 1 0 

1 0 1 0 1 0 0 

1 0 1 0 1 1 0 

1 0 1 1 0 0 0 

1 0 1 1 0 1 34 

1 0 1 1 1 0 0 
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1 0 1 1 1 1 21 

1 1 0 0 0 0 0 

1 1 0 0 0 1 47 

1 1 0 0 1 0 0 

1 1 0 0 1 1 33 

1 1 0 1 0 0 0 

1 1 0 1 0 1 100 

1 1 0 1 1 0 0 

1 1 0 1 1 1 92 

1 1 1 0 0 0 0 

1 1 1 0 0 1 36 

1 1 1 0 1 0 0 

1 1 1 0 1 1 44 

1 1 1 1 0 0 0 

1 1 1 1 0 1 57 

1 1 1 1 1 0 0 

1 1 1 1 1 1 94 

From Table 2a, it is inferred that N1 and N3 are the dominant nodes and N3 is the major node 

in the network. 

 

Figure 2b:   Network with 6 nodes in single branch architecture 

Table 2b: Efficiency Table for the network with 6 nodes 
N0 N1 N2 N3 N4 N5 TE(%) 

N0-N1-N2-N4-N5  

0 0 0 0 0 0 0 

0 0 0 0 0 1 0 

0 0 1 0 1 0 0 

0 0 1 0 1 1 0 

0 1 0 1 0 0 0 

0 1 0 1 0 1 0 

0 1 1 1 1 0 0 

0 1 1 1 1 1 0 

1 0 0 0 0 0 0 

1 0 0 0 0 1 24 

1 0 0 0 1 0 0 

1 0 0 0 1 1 79 

1 0 0 1 0 0 0 

1 0 0 1 0 1 56 

1 0 0 1 1 0 0 

1 0 1 1 1 1 83 

1 0 1 0 0 0 0 

1 0 1 0 0 1 71 

1 0 1 0 1 0 0 
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1 0 1 0 1 1 89 

1 0 1 1 0 0 0 

1 0 1 1 0 1 59 

1 0 1 1 1 0 0 

1 0 1 1 1 1 82 

1 1 0 0 0 0 0 

1 1 0 0 0 1 47 

1 1 0 0 1 0 0 

1 1 0 0 1 1 88 

1 1 0 1 0 0 0 

1 1 0 1 0 1 71 

1 1 0 1 1 0 0 

1 1 0 1 1 1 87 

1 1 1 0 0 0 0 

1 1 1 0 0 1 64 

1 1 1 0 1 0 0 

1 1 1 0 1 1 100 

1 1 1 1 0 0 0 

1 1 1 1 0 1 63 

1 1 1 1 1 0 0 

1 1 1 1 1 1 92 

From Table 2b, it is inferred that N1, N2 and N4 are the dominant nodes and N4 is the 

major node in the network as the change of state of these 3 nodes greatly affect the transmit 

efficiency. Also, whenever N0, N4, N5 have the state as 1, optimized network performance 

is obtained. 

Example3 

Consider the following linear network with 7 nodes, N0 –N6. A simple architecture is 

considered as shown in Figure 3. 

 

Figure 3: Network with 7 nodes in simple linear architecture 

From simulation, it is inferred that nodes N1, N2, N3, N4, and N5 forms the dominant 

nodes. 

Table 3 Efficiency Table for the network with 7 nodes 
N0 N1 N2 N3 N4 N5 N6 TE(%) 

N0-N6 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 

0 0 1 1 0 1 1 0 

0 1 0 0 1 0 0 0 

0 1 0 1 1 0 1 0 

0 1 1 0 1 1 0 0 

0 1 1 1 1 1 1 0 

1 0 0 0 0 0 0 0 

1 0 0 0 0 0 1 18 

1 0 0 0 0 1 0 0 

1 0 0 0 0 1 1 73 

1 0 0 0 1 0 0 0 
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1 0 0 0 1 0 1 71 

1 0 0 0 1 1 0 0 

1 0 0 0 1 1 1 83 

1 0 0 1 0 0 0 0 

1 0 0 1 0 0 1 47 

1 0 0 1 0 1 0 0 

1 0 0 1 0 1 1 79 

1 0 0 1 1 0 0 0 

1 0 0 1 1 0 1 71 

1 0 0 1 1 1 0 0 

1 0 0 1 1 1 1 84 

1 0 1 0 0 0 0 0 

1 0 1 0 0 0 1 45 

1 0 1 0 0 1 0 0 

1 0 1 0 0 1 1 52 

1 0 1 0 1 0 0 0 

1 0 1 0 1 0 1 63 

1 0 1 0 1 1 0 0 

1 0 1 0 1 1 1 90 

1 0 1 1 0 0 0 0 

1 0 1 1 0 0 1 0 

1 0 1 1 0 1 0 0 

1 0 1 1 0 1 1 0 

1 0 1 1 1 0 0 0 

1 0 1 1 1 0 1 0 

1 0 1 1 1 1 0 0 

1 0 1 1 1 1 1 0 

1 1 0 0 0 0 0 0 

1 1 0 0 0 0 1 24 

1 1 0 0 0 1 0 0 

1 1 0 0 0 1 1 79 

1 1 0 0 1 0 0 0 

1 1 0 0 1 0 1 56 

1 1 0 0 1 1 0 0 

1 1 0 0 1 1 1 83 

1 1 0 1 0 0 0 0 

1 1 0 1 0 0 1 71 

1 1 0 1 0 1 0 0 

1 1 0 1 0 1 1 89 

1 1 0 1 1 0 0 0 

1 1 0 1 1 0 1 59 

1 1 0 1 1 1 0 0 

1 1 0 1 1 1 1 86 

1 1 1 0 0 0 0 0 

1 1 1 0 0 0 1 47 

1 1 1 0 0 1 0 0 

1 1 1 0 0 1 1 84 

1 1 1 0 1 0 0 0 

1 1 1 0 1 0 1 71 

1 1 1 0 1 1 0 0 

1 1 1 0 1 1 1 87 

1 1 1 1 0 0 0 0 

1 1 1 1 0 0 1 64 

1 1 1 1 0 1 0 0 

1 1 1 1 0 1 1 89 

1 1 1 1 1 0 0 0 

1 1 1 1 1 0 1 78 

1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 100 
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From Table 3, it is inferred that N5 is the major node in the network which decides the 

transmission efficiency to greater extent. 

Optimization of Linear Coupled Networks 

The coupled networks having transmit efficiency of 75% and above from the above tables 

(Table 1-Table 3) are considered to be optimized and the states of nodes that provides 

optimized linear path are separated and listed below in Table 4, Table 5 and Table 6. 

Table 4: Optimized nodal states for the network with 5 nodes 
Network with 5 nodes in Linear Architecture 

N0 N1 N2 N3 N4 TE (%) N0-N4  

1 0 1 1 1 87  

1 1 0 1 1 89  

1 1 1 1 1 100  

Network with 5 nodes in Branched Architecture 

N0 N1 N2 N3 N4 TE(%) N0-N1-N3 – N4 

1 0 1 1 1 82  

1 1 0 1 1 100  

1 1 1 0 1 78  

1 1 1 1 1 92  

Network with 5 nodes in X-shaped Architecture 

N0 N1 N2 N3 N4   TE (%)  

     N1- N3 N2-N4 

1 0 1 1 1 0 100 

1 1 0 1 0 100 0 

1 1 1 0 1 0 100 

1 1 1 1 0 100 0 

1 1 1 1 1 100 100 

Table 5: Optimized nodal states for the network with 6 nodes 
  Network with 6 nodes in 2 Branch Architecture  

N0 N1 N2 N3 N4 N5 TE(%) 

N0-N1-N3-N5 

1 0 0 1 0 1 92 

1 1 0 1 0 1 100 

1 1 0 1 1 1 92 

 1 1 1 1 1 1 94 

  Network with 6 nodes in 1 Branch Architecture  

N0 N1 N2 N3 N4 N5 TE(%) 

N0-N1-N2-N4-N5 

1 0 0 0 1 1 79 

1 0 1 1 1 1 83 

1 0 1 0 1 1 89 

1 0 1 1 1 1 82 

1 1 0 0 1 1 88 

1 1 0 1 1 1 87 

1 1 1 0 1 1 100 

  1 1 1 1 1 1 92 

Table 6: Optimized nodal states for the network with 7 nodes 
N0 N1 N2 N3 N4 N5 N6 TE(%) 

N0-N6  

1 0 0 0 1 1 1 83 

1 0 0 1 0 1 1 79 

1 0 0 1 1 1 1 84 

1 0 1 0 1 1 1 90 

1 1 0 0 0 1 1 79 

1 1 0 0 1 1 1 83 

1 1 0 1 0 1 1 89 

1 1 0 1 1 1 1 86 

1 1 1 0 0 1 1 84 
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1 1 1 0 1 1 1 87 

1 1 1 1 0 1 1 89 

1 1 1 1 1 0 1 78 

1 1 1 1 1 1 1 100 

Based on the simulations done using NS2 and the inference from Table 4, Table 5 and 

Table 6, there are few findings which are listed below. 

Finding 1: In coupled linear network with ‘n’ nodes, having the following prepositions, 

there exists ‘n-2’ different linear paths with different combinations of input and with 

corresponding output states. 

Finding 2: In coupled linear network with ‘n’ nodes, there will be minimum ‘n-1’ number 

of different domination servers along with different inputs and with corresponding output 

states. 

Conclusion and Future Work 

A linear coupled network with 5, 6 & 7 nodes are simulated using “NS2” tool to find the 

network efficiency. Each network is tested with different combinations of node states and 

the optimized values are found. Based on the simulation experiment, there are some 

findings as listed above. The output is obtained whenever the starting node is active and 

having ‘1’ as a state and if more number of nodes have the state of ‘0’s then the network 

becomes inefficient. Also, the network is not optimized if starting and ending nodes have 

its value as ‘1’ and if the intermediate nodes have ‘0’state. 

The future work is the performance analysis of coupled networks without loss of generality 

and with linked nodes other than input and output in active state in time series for dynamic 

manner. The optimized network having more than 75% efficiency and the corresponding 

state of nodes (as listed in Table 4-6) will be involved and evolved through machine 

learning techniques. 
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