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Abstract 

The rapid increase in traffic, urbanization, and industrial expansion has all contributed to 

a decrease in air quality, which has a vital impact on both the long-term feasibility of the 

environment and the health of humans, particularly in industrialized nations. Numerous 

studies have explored using machine learning for air quality forecasting to reduce 

pollution. While shallow machine learning architectures offer less accurate forecasts, deep 

learning, a recent advancement in computational intelligence, has immense potential in 

predicting air quality. Deep learning frameworks can identify intricate correlations and 

patterns in data on air quality, resulting in more accurate and dependable predictions. 

Several aspects, including climatic conditions, emission sources, and geographical 

characteristics, may be considered by these models, which can help one better understand 

and anticipate air pollution levels. This research investigates deep learning applications' 

periodic changes in air quality. Hybrid deep learning methods utilize optimization, data 

decomposition, and correlation evaluation between PM2.5 particles and other factors to 

overcome limitations. This study contrasts various deep learning algorithms for forecasts 

of air quality and demonstrates that hybrid deep learning is more accurate compared to 

each model alone at predicting future periods of air quality. It proposes future research 

directions for the future generation of models. The literature summary provides valuable 

insights for academics seeking future studies in this field.  

 

Keywords: Air Pollution, Air Quality Forecasting, Deep Learning, Hybrid Learning, 

PM2.5 Prediction. 

 

Introduction 

Environmental problems have been caused by the continuous expansion of global 

urbanization and industrialization. The deterioration of air quality brought on by 

industrialization and urbanization is one of the most significant ecological problems (Kan 

et al., 2012; Samal et al., 2019). Examples of activities that produce and consume energy 

include businesses, power plants, and vehicle emissions. Other natural activities such as 

agriculture burning, volcanic eruptions, and wildfires have eventually contributed to the 

ongoing worsening of global air quality due to the requirements of transportation, 

manufacturing, and daily living (Biancofiore et al., 2017a). Air pollutants are quickly 

becoming a serious challenge for social development, and the environment. management, 

and economic management (Bai et al., 2019). Air pollution leads to an increase in lung 

cancer cases, severe respiratory illnesses, heart attacks, asthma, and a variety of skin 

problems. They may also result in more significant issues that impact the entire planet, such 

as climate change and global warming. As air pollutants Nitrogen dioxide (NO2), Carbon 
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monoxide (CO), Sulfur dioxide (SO2), Ozone(O3), and Particulate Matter (PM2.5 and 

PM10) are airborne pollutants (Chang et al., 2020). A variety of pollutants have an impact 

on the air, which lowers the quality of the air. The pollutant ratios examined using earlier 

recommended approaches are shown in Figure 1. The most prevalent pollutants are CO, 

O3, SO2, NO2, PM2.5, PM10, and O3. This graph examines around 40 studies that employ 

various pollutants in the pollution forecast technique (Kumar SV et al (2, n.d.). 

 

Figure 1: The Earlier technique investigated the percentage of various contaminants. 

Based on the effects on human health, air pollution is categorized using the Index for Air 

Quality (AQI). According to the amount and duration of exposure to pollution conditions, 

humans may suffer a variety of fitness repercussions, which are the focus of the AQI. By 

each country’s air quality standards, the AQI Measurements vary from one country to the 

next. Health problems are more likely to occur when there are greater AQI scores (Shang 

et al., 2019a).  

Among them, the PM2.5 particle is microscopic with a diameter of under 2.5 microns. 

PM2.5 particles are more active than bigger particulate pollutants, which allows them to 

travel more rapidly. And readily through the air as well as stay in the atmosphere for a 

longer period. One of the most important causes of air pollution is PM2.5. Because of the 

small particle size, it is easily able to penetrate the human throat and nasal cavities and 

induce cardiovascular, bronchial, or pulmonary diseases (Vargas et al., 2018; Xing et al., 

2016). Apart from these air pollutants, smoke, organic compounds, and heavy metal dust 

from PM2.5 People’s health is seriously threatened by air pollution (X. Li et al., 2020). 

Estimating PM2.5 attentions is crucial for managing and lowering air pollution, which 

might aid in the government’s capacity to effectively provide early warnings and encourage 

people to drive safely. The air quality prediction may also contain precise information for 

pollution prevention and management. The World Health Assembly of WHO estimates that 

PM2.5 exposure causes around seven million fatalities annually and has the most 

detrimental effect on human health. Numerous respiratory disorders, including problems 

with cardiovascular function, may arise from prolonged exposure to poor air quality. Figure 

2 shows the Effects of Air Pollution (PM2.5) On the Human Body (Www.Devic-earth.com, 

n.d.) 

 

Figure 2: Effects of Air Pollution (PM2.5) On the Human Body. 
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Therefore, the significance of PM2.5 concentration forecasts provided by an efficient 

forecasting model will increase (Mehmood et al., 2022). Several natural elements often 

influence air quality levels, which in turn influences the analytical forecast outcomes. There 

is a direct relationship between weather conditions and atmospheric quality. Meteorological 

parameters enable rapid identification of the origins of air pollution. The following two 

factors may be related to the key reasons why forecasting PM2.5, an extremely complex 

topic in forecasting, is difficult. The primary hindrances to enhancing forecast precision 

are, first, the irregular and dynamic data qualities of the PM2.5 time series, which are 

influenced by several external factors (Ma et al., 2020; Pak et al., 2020a; X. Xu et al., 2020). 

Commonly occurring elements, such as climate, geography, and temporal traits, are 

typically shown as outside variables that contribute to the non-stationary and non-linear 

assets of the linked time series (Shang et al., 2019a). PM2.5 predictions, on the other hand, 

necessitate a high data frequency, a diverse array of PM2.5 sources, and several external 

variables, which may result in difficulties such as a protracted period of training and an 

extensive amount of data (Gugnani & Singh, 2022a).  

By tackling the current challenges, a number of driven by data strategies have been created 

to increase forecast accuracy in this setting (Biancofiore et al., 2017b; P. Du et al., 2020; 

García Nieto et al., 2018a; Shang et al., 2019b). The historical forecast models may be 

categorized into two categories: non-linear models for forecasting and linear forecasting 

techniques, depending on the construction of the data-driven framework. Due to the 

uncertainty of predicted inputs, autoregressive integrated models with moving averages 

(ARIMA) (García Nieto et al., 2018b) multiple linear regression (MLR) (Moisan et al., 

2018; Vlachogianni et al., 2011), and spatially and time-related weighted regression models 

(GWR) (B. Guo et al., 2021) have all been widely employed to predict concentration. While 

the non-stationary nature and non-linearity behavior of PM2.5 cannot be fitted at that time 

modeled by the linearity forecasting model. Additionally, the labor and computational 

resources needed for these approaches, which include estimating hundreds of parameters, 

are expensive (Zaini et al., 2022). Furthermore, the data features of PM2.5 are routinely 

predicted using nonlinear forecasting models such as supporting vector regression (SVR), 

artificially intelligent neural networks (ANN), and extraordinary learning machines. Other 

pollutants, such as PM10, CO, NO2, SO2, and O3, as well as weather and temporal factors, 

are also linked to the spread of PM2.5 (Shang et al., 2019a). This PM2.5 prediction, 

therefore, requires the use of several air quality monitoring indicators, meteorological 

variables, and temporal variables. Specifically, this condition resulted in the training and 

processing of large volumes of input data for classical machine-learning models, which 

made it more challenging to employ those models (Qi et al., 2019). Deep learning 

approaches, such as variable long-short-term memories (LSTM)(X. Li et al., 2017; Ong et 

al., 2016; X. Xu et al., 2020), recurrent neural networks (RNN) (Pak et al., 2020a)(S. Du et 

al., 2020), deep belief networks(Pak et al., 2020a, 2020b, 2020c), gated recurrent 

unit(GRU) (Zhang et al., 2021a), and convolution neural networks(CNN) (Ravindran & 

Gunavathi, 2023) are extensively used to anticipate PM2.5 concentrations in a manner 

similar to this. Deep learning neural networks improve above more traditional machine 

learning techniques in producing great prediction performance. The major factor is that 

deep learning techniques can simultaneously collect long-term and short-term 

characteristics, giving them a powerful modeling capacity for more external factors. 

Monitoring and Predicting Air Quality has Several Challenges 

While new research is making progress in the current time surveillance of air quality, there 

are still problems that require further attention to be fixed (Samal et al., 2021). 

• Real-time Accurate concentrations should be provided by taking into consideration 

varied weather circumstances; therefore, it is important to create AQ monitoring 

methods that are reliable and practical.(Gugnani & Singh, 2022b). It is essential to 

look at the nonlinearity and instability of the system. 

• It is essential to look at the nonlinearity and instability of the system.  
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• Incorporating the machines into a constantly accessible, manageable internet 

connectivity. 

• The requirement to use data on continuously monitored air quality to enhance short- 

and long-term forecasts while accounting for all factors influencing them. 

• To achieve the best performance, use hybridization. 

The generic Air quality forecasting model is shown in Figure 3. It forecasts future air 

quality indices experimentally using historical AQIs, thresholds, and meteorological data. 

Unidentified environmental factors may produce abrupt fluctuations in air quality that are 

beyond its control. Air pollution is monitored at the AQ observation station, which also 

gathers data and sends it to a server for study. The apparatus is equipped with humidity, 

temperature, atmospheric pressure, gas, and dust particle sensors. The information is sent 

to the cloud for analytics after being shown as an AQI in an internet application. The Air 

Quality Surveillance System is safeguarded by Comprehensive Operation and Maintenance 

Control, and IMD and EMRC do daily inspections.  

    

Figure 3: A generic perspective on the air quality forecasting framework 

Monitoring stations transmit air quality and meteorological information to the control 

room. The Central Control Room converts AQMS data to AQI before transmitting it to 

each region’s Internet site along with weather-related data and air quality predictions. The 

operating server of the DDS system receives the information from the file transfer protocol 

(FTP) server and delivers it to the Digital Display Board in each city (Hable-Khandekar & 

Srinath, 2017). 

Related Work 

There is a lengthy history of research on air quality forecasting, and most current 

publications use statistical methods and simple machine learning models, such as 

regression, ARIMA (Díaz-Robles et al., 2008), HMM (Dong et al., 2009), and Artificial 

Neural Networks (Q. Zhou et al., 2014), to handle air quality prediction challenges. The 

frequency of air quality predictions derived from large-scale information analysis has 

increased in several years. More researchers are aiming to apply data-driven techniques 

because of the dynamic and nonlinear character of time-series information linked to air 

quality, especially in urban analysis. Air quality has been predicted using a vast quantity of 

data in a variety of ways, which may help with air pollution warnings and management (Yi 

et al., 2018). Zhou et al. used ensemble methods to create a hybrid approach for a single-

day PM2.5 forecast. Zheng et al. created a semi-supervised learning environment for air 

quality predicting that utilized co-training architecture with two different classifications 

(CRF and ANN) . Luo Zhang proposed a semi-supervised method that used EMD and 

BiLSTM neural networks to estimate PM2.5 levels. To effectively manage missing data in 

ST forecasting tasks.  Junxiang Fan et al created a unique DL framework and a DRNN 

setup using LSTM. To forecast PM2.5 ST variability, Yanlin Qi et al [54] created a DL 

hybrid framework incorporating LSTM and Graph CNN.  Dr. Sankari and S. Jeya estimated 

RMSE, MAE, and SMAPE using a bidirectional LSTM model to predict illnesses linked 

to PM2.5(Jeya & Sankari, 2020). 
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Theoretical Frameworks and Terminology of Deep Learning 

Deep networks employ weighted connections between neurons in the network to create 

representations of knowledge in high-dimensional domains. DL has been successfully 

utilized in a variety of disciplines, including computer vision, natural language processing, 

and speech recognition, as well as the sciences of physics and chemistry. Several deep 

learning architectures might be created using the existing quantity of time series air quality 

data. These architectures may be trained to forecast air quality levels in various areas, 

providing useful information for environmental monitoring and pollution control 

operations. Deep learning algorithms may also be used to uncover patterns and connections 

in data that standard statistical approaches may miss, resulting in a more thorough 

knowledge of air pollution dynamics (Lee et al., 2018). The most often utilized deep 

learning approaches in air quality forecast (DBM) include long-short-term memory 

(LSTM) and recurrent units with gates (GRU), Gated Recurrent Unit (RNN), neural 

networks with convolution (CNN), deep belief networks (DBN), and deep Boltzmann 

methods.  

RNN: Recurrent Neural Network 

This kind of network feeds its current step’s output into the preceding stage. In a typical 

neural network, each node’s identification is its input/output (I /O). However, in certain 

scenarios-like anticipating a statement’s next phrase the past nodes are also required, 

necessitating the recall of those nodes. To address this issue, RNN was developed using a 

hidden layer. The hidden state, which retains very little information about a topic, is the 

primary and most important feature of RNN. It has an "archive" where all measurement 

data is kept. This generates the output by performing a similar operation on all the inputs 

or invisible layers; hence, it applies the same parameters to each input. This network 

minimizes parameter complexity, in contrast to others. Figure 5 illustrates RNN's network 

architecture. 

 

Figure 4:  RNN's network architecture 

RNNs are capable of processing sequential data and producing sequential output. 

Relationships are discovered using RNN using an activation function that is nonlinear, and 

the backpropagation process is used to update network values. (Sánchez-Balseca & Pérez-

Foguet, 2020). Discovering connections between distant events is very difficult using the 

BPTT methods due to its susceptibility to vanishing gradients caused by several derivative 

runs, which yields very little update. 

In recent years, RNN has gained global recognition for the quality of air predictions due to 

its capability to absorb serial data. (Arsov et al., 2020). When it comes to predicting PM2.5 

concentrations, a periodically already-trained deep neural network (RNN) forecasting 

model outperforms existing ANN models like RNN and FFNN. If training takes too long, 

RNNs may have trouble detecting long-term dependent state in input data and may 

experience vanishing and ballooning gradients. (Liao et al., 2020).  

Long- and Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) 

The RNN by Hochreiter and Schmidhuber has been updated into LSTM. To solve the 

problem and enhance network performance, notably in air quality forecasting, better 

frameworks have been developed, such as LSTM as well as GRU. Implementing gating 
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systems like LSTM fixed the vanishing gradient issue during BPTT updates. These systems 

let nodes forget or pass memory when not in use, maintaining enough error for updates. On 

input data, the LSTM employs trained gates and feedback loops (Freeman et al., 2018). The 

multiplicative gates determine whether incoming data must be stored in memory and 

control how the blocks operate. While the input gate controls the cell activation flow from 

input into the memory block’s function. While the gate of input via the memory cell into 

further nodes (Freeman et al., 2018). These gates are essential for managing the information 

flow within a neural network. They enable the network to retain important information and 

filter out irrelevant input by selectively allowing or blocking the passage of data. For the 

network to efficiently process and store information in its memory cells, this gating 

mechanism is necessary. Figure 5 depicts the generic network architecture of an LSTM 

unit, which consists of a memory cell and three memory gate units. 

Although GRU networks are a more straightforward version of LSTM networks, they are 

still useful for modeling sequential data. GRU networks have a single state that combines 

memory and hidden states, as opposed to LSTM networks, which have separate memory 

and hidden states. In comparison to LSTM networks, GRU networks are therefore simpler 

to train and have lower computational expenses (Huang et al., 2021). Regarding faster 

calculation times and better performance, GRU can also be superior to the LSTM 

algorithm. With correlation values ranging from 0.93 to 0.97 for five different input 

parameter combinations, LSTM also generates precise air pollution predictions (Samal et 

al., 2021). The GRU network, which comprises the update gate and reset gate, is seen in 

Figure 6. 

 

Figure 5: Generic network architecture of the LSTM 

 

 Figure 6: Network structure of the GRU 

 The Neural Network of Convolution 

Convolutional neural network, also referred to as CNN, is widely regarded as the most 

effective method for spatial feature extraction, and it has been utilized in cutting-edge 

Computer Vision research (H. Zhou et al., 2021a). While CNN is most recognized for its 
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spatial or 2D data performance on 2D or spatial data, it can also function on 1D and 3D 

arrays. CNN networks consist of multiple layers, involving convolution, dropout, max 

pooling, and fully interconnected layers, with each layer having a three-dimensional 

structure consisting of height, breadth, and depth. CNN model aids in learning the latent 

features of a time series dataset and identifies spatiotemporal correlation within the dataset, 

CNN’s two primary functions are weight distribution and time series data 

compression(Tariq et al., 2021a). CNN is suitable for time-series forecasting because it 

provides extended convolutions, which allow filters to compute extensions between cells. 

The amount of space between cells helps the neural network better understand the links 

between the time-series observations. The ability of CNN to recognize patterns and trends 

over time depends on this understanding of temporal dependencies. Further enhancing their 

forecasting abilities, CNNs are well-suited for time-series analysis due to their capacity to 

learn pertinent features from the data automatically. CNN-based models accurately 

estimate pollution levels and produce excellent forecasting results in terms of error 

assessment. The general network architecture of CNN is seen in Figure 7. 

 

Figure 7: The general architecture of CNN 

Deep Belief Networks (DBN) 

Restricted Boltzmann Machines (RBMs), with an observable layer and a hidden layer are 

layered to produce DBNs, which are probabilistic generative models (Kow et al., 2020). 

There are no connections inside any of the visible or concealed layers, just connections 

between the layers. By training the weights between neurons, we can maximize the 

likelihood that the entire neural network will generate training data. The DBN model may 

be used to create data in addition to classifying and identifying characteristics in data. 

According to Le Roux and Bengio’s research, if the buried layer’s number of neurons is 

high enough, RBMs can suit any discrete distribution (Janarthanan et al., 2021). DBNs can 

thus potentially model intricate and varied datasets, making them an effective tool for a 

variety of machine learning tasks. It can also be created by stacking RBMs, enabling 

hierarchical data representations and the capture of higher-level features. Figure 8 shows 

the Structure of Deep Belief Networks. 

 

Figure 8: The Structure of Deep Belief Networks 
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A Summary of Deep Learning Techniques  

Deep learning models, which are more accurate prediction models due to their adaptability, 

have been created by artificial intelligence. These models extract latent features from large 

datasets and conduct temporal analysis, enticing time series analysis researchers and 

policymakers. The text investigates the air quality forecasting capabilities of deep learning 

classifiers including RNN, LSTM, CNN, GRU, and DBN. The most often used assessment 

criteria are RMSE (Root Mean Square Error) and MAE (Mean Absolute Error). The most 

often used assessment criteria are RMSE and MAE. In terms of predicting accuracy, the 

research finds that algorithms using deep learning work better than predictive machine 

learning models (Jiang et al., 2021a). For example, by lowering the root-mean-square error 

(RMSE) by 18.35% and forecasting hourly PM2.5 levels, LSTM improves the XGBoost 

model's performance. When selecting hyperparameters for deep learning algorithms, 

caution must be taken since huge networks might impede training and cause overfitting. 

The learning rate, batch size, and regularization intensity are important characteristics. To 

prevent overfitting, it’s essential to strike a balance between model complexity and 

generalization potential. Using cross-validation and early halting are two methods that may 

be used to identify the ideal hyperparameter values. The appropriate network design for 

dependable input characteristics must be chosen to improve prediction accuracy and 

decrease error. Results may be enhanced by experimenting with activation functions and 

optimization methods. Preprocessing processes and consideration of training data 

availability and quality may improve input characteristics. Table 1 demonstrates the 

Previous research on deep learning-based air pollution prediction. 

Hybrid designs may handle complex problems and increase forecasting accuracy. CNN and 

RNN combined with external inputs like meteorological data or satellite images may give 

context and increase predicting accuracy while simultaneously capturing spatial and 

temporal connections. 

Table 1: Previous research on deep learning-based air pollution prediction. 
Ref Examine 

Region 

Method Applied    Target 

Pollutants 

Granularity 

of Time 

 Predictive 

standards 

(Ma et al., 

2019a) 

Beijing LSTM and GRU, (SHAP) 

method 

PM2.5, PM10, 

SO2, 
Metrological 

condition. 

Hourly basis MAE, MSE, 

RMSE, R2 

(Yang et al., 
2022) 

Shanghai iDeep Air architecture PM2.5 Hourly basis RMSE, MAE 

(W. Du et 

al., 2023) 

Beijing TSVR, MTSVR PM2.5, PM10, 

O3 

Hourly basis RMSE, 

NMGE 

(Tariq et al., 
2021b) 

Talcher, 
India, 

Beijing 

KNN, CNN–LSTM, BIGRU, 
Convolutional LSTM–SDAE 

(CLS) Sparse Denoising 

Autoencoder. 

PM2.5 Time (Day) MSE, RMSE, 
MAPE. 

(Xayasouk 

et al., 2020) 

South 

Korea 

TL-ResNet, RNN PM2.5 Hourly basis RMSE, 

MAE, 

MAPE, R2 

(Le et al., 
2020) 

 South 
Korea 

(LSTM+DAE) model PM2.5, PM10 Hourly basis RMSE 

(C. Guo et 

al., 2020) 

Korea  ConvLSTM PM2.5 12 h RMSC 

(Zhang et 
al., 2021b) 

Shanghai (RNN+GRU+LSTM) model PM2.5 Hourly Basis MAE, MAPE 

(S. Li et al., 

2022) 

Beijing  EMD-BiLSTM. PM2.5 24 h RMSE 

(Ma et al., 
2019b) 

China LSTM with Bayes PM2.5 Hourly basis MAE, MAPE 

The Hybrid Deep Learning Model for Forecasting 

The models that integrate deep learning with machine learning (CNN-BPNN), and several 

deep learning methods (CNN-LSTM), ensemble learning (RNN-Bootstrap), and an 

optimization algorithm (LSTM-BO) are examples of hybrid deep learning-based models 

(Jiang et al., 2021b). These models can be used as an alternative to more difficult 
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computational problems and can improve the forecasting capabilities of more basic models. 

Convolution neural networks (CNN) and Backpropagation neural networks (BPNN)  a 

hybrid model, are utilized to estimate regional multistep ahead PM 2.5 concentrations. It 

was put out by Know et al. (2020) and has demonstrated improved learning performances 

with significant characteristics from numerous input variables and generating precise air 

pollution forecasting. Regarding RMSE & R2 accuracy, comparative tests reveal that CNN-

BPNN performs better than the separate RF, BPNN, and LSTM models.   Additionally, 

CNN reduces the MAE value of the BPNN model for forecasting 10 hours in advance by 

27% during training and 28% during testing. The AQI in a large metropolis is classified 

and predicted using a combination of the LSTM and SVR techniques. According to 

Janarthanan et al’s publication in 2021, it outperforms other models based on deep learning, 

such as LSTM, RNN, and a hybrid EMD-CNN with the greatest merit of R (0.97) and least 

RMSE (10.9) when it comes to AQI predictions (Janarthanan et al., 2021). A new hybrid 

deep-based ambient air quality prediction technique (DAQFF) for PM2.5 forecast is 

introduced by Shengdong Du et al. DAQFF combines networks of LSTM with one-

dimensional CNNs to learn patterns of spatial-temporal dependencies and correlations from 

multivariate data. Studies reveal that standard shallow learning and deep learning models 

perform better (S. Du et al., 2021). Table 2 outlines the deep learning-based hybrid 

forecasting model that has been developed for air quality forecasting.  

Table 2: Previous research on the prediction of air pollution using Hybrid deep learning. 
Ref Examine 

Region 

Method 

Applied 

  Target 

Pollutants 

Granularity of 

Time 

  Predictive 

standards 

(S. Du et al., 

2021) 

Beijing DAQFF PM2.5 Hourly basis MAE, MSE, 

RMSE, SMAPE 

(Bhanja & Das, 

2021) 

Delhi HDNN PM2.5 Hourly basis RMSE, MAE, 

SMAPE 

(R. Xu et al., 

2023) 

China WT former PM2.5, PM10 Hourly basis RMSE, MAE, 

SMAPE 

(Kow et al., 2020) Taiwan BPNN-CNN PM2.5 Time (Day) MAE, RMSE, R2 

(Janarthanan et 
al., 2021) 

India SVR-LSTM PM2.5, NO2, SO2, 
CO, O3. 

Hourly basis R2, RMSE, MAE, 
MAPE 

(Ma et al., 2019c)  China BLSTM-TL PM2.5 Hourly basis RMSE, R2 

(Sharma et al., 

2020) 

Australia  CNN-LSTM PM2.5 1 Hourly basis RMSC, MAE, 

MAPE 

 (L. Li et al., 
2020) 

USA Bootstrap 
method -AE 

PM2.5 Hourly Basis RMSE, R2 

(Dun et al., 2022) Fushun, 

China 

DGRA, STCN PM2.5 Hourly 

Basis 

RMSE, MAE, R2 

(Zeng et al., 2022) Beijing, 
China 

NLSTM PM2.5 Hourly Basis MAE, RMSE, R2 

Optimization Algorithm 

Several elements, such as the number of layers, neuronal networks, and the function of 

activation, may influence the architecture of deep learning forecasting models that are built. 

An essential step in creating a deep learning model is fine-tuning the parameters or 

hyperparameters. It entails fine-tuning the model’s hyperparameters to attain the setting 

hyperparameters optimally, preventing overfitting. Li et al (2017) conducted experiments 

to find the ideal neuron count and delay times for network architecture. Error analysis is 

used to assess the impact of every hyperparameter combination, and the parameter values 

are selected at random. This process requires time since the evaluation has to be done again 

to get the desired outcome (Zaini et al., 2022). Optimization methods can considerably 

reduce the time required to execute hyperparameter searches and improve forecasting 

models. Ma et al. (2020a) developed a hybrid layer linked to latency LSTM (Lag-FLSTM) 

and Bayesian BO to forecast PM2.5 concentration. The optimal Lag-FLSTM parameters 

were found using BO, and an enhanced LSTM design among an added lag layer was put 

into practice. The study discovered that BO lowered the RMSE of Lag-LSTM in air 

pollution forecasting by 16.18%. Deep learning optimization methods outperform models 

without algorithms in terms of forecasting accuracy. In current architectures, however, 

metaheuristic algorithms are not especially optimized for deep learning hyperparameters. 
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Data Decomposition for Deep Learning Strategies 

Meteorology, industrial emissions, transportation movement, and air pollution build-up all 

impact air quality predictions. Land use activities, particularly in cities, influence air 

quality. Data decomposition methods may be used to address bigger and more complicated 

data sequences to increase forecasting accuracy. Discrete wavelet transformation (DWT), 

variational mode decomposition (VMD), and Empirical mode decomposition (EMD) are 

some of the methods applied for data decomposition. EMD is a simple decomposition 

approach that extracts feature frequency without the need for predefined fundamental 

functions. Based on local time scales, it decomposes complicated characteristics into 

intrinsic mode functions (IMF). 

In terms of prediction accuracy, EMD-BiLSTM outperforms BiLSTM alone, with a 38% 

improvement in RMSE. Compared to GRU models, hybrid EMD-GRU reduces prediction 

error by 44.5% for RMSE,40.82% MAE, and 11.63 SMAP. When handling non-stationary 

time series, EMD significantly improves forecasting abilities and removes the temporal lag 

that occurs within GRU. As a means of overcoming EMD’s sampling and noise sensitivity 

constraints, VMD splits real values into larger no sub-signals with different frequencies. 

The best-predicted outcomes are generated by VMD-SE-LSTM, with an R of 0.99. DWT 

is a technique that separates real-time series data into a number of smaller signals, also 

known as low-nearness signals and high-frequency detailing motions. Compared to LSTM, 

hybrid DWT-LSTM performs better. WPD is yet another single decomposition method that 

has been created to improve signal processing performance and address the disadvantage 

of WD in high-frequency zones. In general, the efficiency of disintegration techniques for 

forecasting, and data processing models may be increased by using data decomposition 

approaches for air quality prediction. Alternative methods for example complementary 

EEMD (CEEMD) and enhanced CEEMD with adaptive noise (ICEEMDAN), are also 

available (Zaini et al., 2022).  

Correlation Evaluation between PM2.5 Particles and Other Factors 

An air quality forecasting approach that is greater in precision requires a correlation 

evaluation between meteorological substances and contaminants. Numerous variables 

influence PM2.5 concentrations is influenced through multiple variables. Even so, every 

element has a substantial impact on the problem of air pollutant prediction. For instance, 

high atmosphere wind speed and pressure often reduce the quantity of pollutants in the air, 

whereas excessive humidity might exacerbate the quality of the air. Therefore, the features 

of meteorological parameters are important when it comes to predicting air quality (H. Zhou 

et al., 2021b). It has been ascertained that Yemen’s PM2.5 levels exhibit a cyclical pattern 

that is impacted by meteorological elements including temperature and sun radiation. In 

both the fall and summer samples, there is a positive link connecting temperature and 

PM2.5 concentrations, according to statistical analysis. Nevertheless, the investigation has 

also revealed a negative correlation in summer data and a positive correlation in fall 

samples between relative humidity and PM2.5 concentration (Hael, 2023). In addition, 

several other variables, including geography, temperature, and precipitation, may have a 

big impact on PM2.5 concentrations. Because of the complex relationships between these 

factors, it is essential to consider their overall impact when creating an effective forecasting 

model PM2.5 and PM10/SO2/CO/NO2 exhibited a link with pollutant components, with 

lower-frequency spectrum correlations being weaker and higher-frequency spectrum 

correlations being greater. When O3, temperature, pressure, speed of the wind, and 

moisture were mostly exhibited in the low-frequency band, humidity was reflected 

primarily in the slower high-frequency signals band. Figure 9 shows the PM2.5 and other 

contributing variables' correlation across several frequency bands (R. Xu et al., 2023). The 

attention matrix analysis explained the perdition behavior of the model and revealed the 

time-frequency law between the variables. 
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Figure 9: Correlation of PM2.5 and other relevant factors over multiple frequency bands. 

Comparison Between Different Models 

A complete comparison with twelve different kinds of benchmarks is performed with a 

focus on the predicted findings. Table 3 and Figure 10 display the forecasting comparative 

results from the experiences of MAPE, MAE, and RMSE, accordingly. The MAPE analysis 

in Table 3 shows that linear regression (LR) does a poor job of predicting PM2.5, with an 

average of 28% of MAPE. This information is presented because of the study. This 

indicates that depending entirely on LR might result in incorrect forecasts and reduce the 

efficiency of the forecasting system. It is vital to investigate different models that can 

provide forecasts that are more accurate and can improve the effectiveness of the system 

that is used for forecasting. DeepTCN which is the only method of predicting surpasses the 

other eight, and it comes in at number four in terms of expected performance. On the other 

hand, hybrid models such as EMD-GRU, EEMD-LSTM, and CEEMDAN-DeepTCN 

exceed it. These models incorporate the best aspects of a few different made by hybrid 

models and show a better level of resilience and stability when compared to those made by 

single forecasting methodologies (Jiang et al., 2021a). 

Table 3: Comparing the performance of various methodologies based on criteria 
Forecasting Model Performance Criteria 

MAPE MAE RMSE 

NAIVE 0.1125 3.5822 6.1606 

ARIMA 0.1112 3.2614 5.2491 

ETS 0.1028 3.1850 5.3791 

LR 0.1402 3.4900 5.2590 

SVR 0.1418 3.5814 5.5224 

BPNN 0.1343 3.5870 5.6460 

LSTM 0.0965 3.0390 4.7490 

GRU 0.0963 2.9800 4.7750 

DEEPTCN 0.9200 2.8290 4.5710 

EEMD-LSTM 0.0874 2.2077 2.9203 

EMD-GRU 0.0661 1.7422 2.6230 

CEEMDAN-DEEPTCN 0.0265 0.6564 1.1064 

 

Figure 10: Graph for the visual observation of various methods in terms of criteria. 

(a)MAPE (b)RMSE. (c)MAE. 
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Discussion and Recommendations 

This study demonstrates how deep learning neural networks can be employed to predict 

quality of air using multiple modeling techniques, including data processing, correlation 

analysis connecting PM2.5 and other variables, and individual and hybrid models. It 

examines their traits, issues, and goals. Deep learning (DNN) has been shown to outperform 

superficial machine learning architecture. However, RNN-based models such as LSTM as 

well as GRU are favored due to their capability to capture time-dependent input, their 

ability to manage vanishing gradient problems, and their incredibly straightforward 

development. For air quality forecasting, stacking LSTM, bidirectional and stacked 

bidirectional LSTM, and stacked GRU have also been developed. CNN has gained 

popularity for its capacity to extract features from datasets, and autoencoders have been 

employed to do so. Due to their capacity to estimate air quality utilizing complex datasets 

and adapt to varied forecasting objectives, hybrid models that incorporate the benefits of 

several approaches have received attention. Decomposition techniques can enhance 

forecasting performance by up to 80% a hybrid models can reduce prediction error by 60-

80%. Hybrid models have been employed in a variety of industries, including wind power, 

traffic, and temperature estimation. Hybrid sequence-to-sequence architectures outperform 

solo models and offer remarkable perdition abilities. The creation of advanced hybrid 

models, on the other hand, may enhance computational complexity while diminishing 

model time efficiency. Because air quality cannot be improved with a few techniques to 

manage complex forecasting of times series challenges, balanced model development 

methodologies must be considered when developing optimal hybrid models to meet diverse 

forecasting needs. 

Future Development of a Model for Air Quality Forecasting 

The application of RNN-based frameworks to the field of air quality forecasting has grown 

in popularity, primarily attributed to their adaptability with time series forecasting. 

Enhanced iterations of RNN-based models, including LSTM, GRU, and CNN, are gaining 

prominence in the domain of air quality forecasting. Subsequent studies should examine 

the effectiveness and generalizability of various methods, such as unsupervised deep 

learning techniques like DBM. DBN, and DRL. Exploring optimization strategies such as 

evolutionary algorithms, and metaheuristic algorithms, Bayesian optimization should be 

considered in hybrid forecasting models, but the review study reveals a scarcity of findings 

concerning this type of model. Additional methods for optimization, such as the Harris 

Hawks optimizer, Bonobo optimization algorithm, group teaching optimization algorithm, 

and Antlion optimizer, make it possible to investigate hybrid deep learning models. 

In the realm of secondary decomposition or hybrid data decomposition methods in deep 

learning, the use of hybrid data decomposition techniques has become common. It is 

possible to boost the accuracy of forecasting models by integrating different data 

decomposition approaches in two-level decomposition procedures, and further studies 

should investigate the efficacy of hybrid models in calculating long-term periodic changes 

in air quality using larger input datasets. Because of their restricted space, sparse 

distribution, and greater operating and maintenance expenses, ground air quality 

monitoring can be difficult to obtain data from. For this reason, the majority of evaluated 

research relies on datasets from these sites. Acquiring air quality data using satellite 

photography, which provides wide and temporal observation at a reasonable cost, may be 

judged appropriate for future inquiry (Imani, 2021). 

Conclusions 

This study delivers a thorough analysis of many deep–learning forecasting models for the 

time-periodic PM 2.5 airborne particles in different metrics were analyzed to determine the 

effectiveness of these models. Theoretically developed modeling methodologies are 

systematically aligned to provide a summary of several different deep-learning techniques. 

This research described the combination of numerous parts that resulted in strong hybrid 
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models for forecasting. In addition, this work sequentially summarized the key elements of 

a deep learning model for forecasting, including data decomposition, correlation evaluation 

between PM2.5 particles and other factors, and feature extraction. This research is followed 

by a comparison of models for forecasting that have been constructed to highlight the 

features of estimating air quality using various frameworks. The analysis reveals that in 

comparison to standalone and machine learning approaches, hybrid deep learning 

technology has been effectively used to predict air containments and meteorological 

datasets having greater accuracy. A comprehensive review study could be undertaken to 

evaluate the use of hybrid applications and deep learning in various aspects of air quality 

prediction, including the estimation of gas emissions and their environmental impact, as 

well as the assessment of deep learning models from several angles, including the 

management of values that are missing in the dataset and model parameter optimization 

which may lead to the development of new theories and significant discoveries. 
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