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Abstract 

This study examines the interaction between artificial intelligence (AI), Bayesian 

statistics, and various key brain structures, such as the hippocampus, amygdala, and 

thalamic nuclei. The goal is to explore how Bayesian inference can contribute to the 

development of AI systems that simulate and optimize essential aspects of human 

cognition, such as decision-making, attention, learning, and memory. By analyzing the 

functions of these structures within the framework of Bayesian statistics, possible avenues 

are identified for improving the adaptability and efficiency of AI systems in problem-

solving and decision-making. Additionally, the relevance of Brodmann areas in the 

context of AI and Bayesian statistics is considered. The knowledge gained from this study 

can provide a solid foundation for the design of increasingly advanced and human-

centric AI systems, facilitating more effective and understandable interaction between 

humans and AI technologies. 
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Introduction 

Artificial intelligence (AI) is a field that seeks to develop systems that can perform tasks 

that normally require human intelligence (1), such as learning, reasoning, and adaptation 

(2). Bayesian statistics is a branch of statistics that relies on Bayes' theorem to update the 

probability of a hypothesis based on observed data (3). Both fields, AI and Bayesian 

statistics, have been shown to have deep links to human brain functioning, especially in 

terms of information processing and decision-making(4). 

Bayes' theorem states the following: P(H|D) = (P(D|H) * P(H)) / P(D) 

Where: P(H|D) is the posterior probability of hypothesis H given evidence D. 

P(D|H) is the probability of evidence D given that hypothesis H is true (likelihood). P(H) 

is the a priori probability of the hypothesis H. P(D) is the probability of evidence D (5). 

In artificial intelligence, especially machine learning, Bayesian statistics is used to update 

beliefs about models and their parameters based on observed data. This allows AI 

algorithms to adapt and learn more efficiently. 

Learning in the human brain is based on a highly adaptive and efficient system that 

processes information and makes decisions based on available evidence. Some AI 

algorithms, such as artificial neural networks, are inspired by the structure and function of 
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the human brain. These algorithms mimic how neurons in the brain process and transmit 

information through synaptic connections. 

In addition, the human brain appears to use principles similar to those of Bayesian 

statistics to process information and make decisions. Neuroscientists have found evidence 

that the brain updates the probabilities of different hypotheses based on observed 

evidence, suggesting that Bayesian statistics may be a theoretical framework for 

understanding how the brain processes information and makes decisions (4) 

AI and the Bayesian Formula 

The Bayes theorem formula can be applied in artificial intelligence systems by adapting 

and replacing the components of the formula depending on the context and the specific 

problem being addressed. Each element of the formula is described below and how they 

are integrated into how the AI works. 

P(H|D): The subsequent probability of a hypothesis (H) given the evidence (D) represents 

the degree of belief actualized in a specific model or parameter after looking at new data. 

In AI, this term can be interpreted as the probability of a model or parameter given the 

training data. In supervised learning, for example, one could estimate the probability that 

a class label is correct given the input. 

P(D|H): The plausibility, or probability of the evidence (D) given that hypothesis (H) is 

true, is used in AI to quantify how well a model or parameter explains the observed data. 

In machine learning, likelihood can be calculated as the probability of the training data 

given the model's predictions. In generative models, this term is used to measure the 

quality of the samples generated. 

P(H): The a priori probability of hypothesis (H) reflects prior knowledge or initial beliefs 

about a model or parameter before looking at the data. In AI, prior knowledge can be 

incorporated into the initialization of model parameters, such as the weights of a neural 

network. A priori distributions can also be used to express initial beliefs about a model's 

parameters, such as in Bayesian machine learning models. 

P(D): The probability of evidence (D) is a normalizing constant that ensures that 

subsequent probabilities add up to one. In AI, this term is often omitted or implicitly 

calculated, as the main focus is usually on maximizing the subsequent probability or 

finding the most likely values of the model parameters (3,5). 

In summary, the Bayesian statistics formula can be applied in artificial intelligence by 

adapting its components to specific problems and contexts. This allows AI algorithms to 

learn efficiently, adapt to new data, and combine prior knowledge with observed evidence 

in decision-making. 

Relationship Between Artificial Intelligence Components and Anatomical Brain 

Structures 

Artificial intelligence (AI) takes inspiration from brain structures and functions in the 

development of algorithms and learning systems. In this section, we attempt to draw 

analogies between the components of AI and anatomical brain structures. 

Artificial neural networks (ANNs) are a core component of AI, inspired by the 

organization and function of neurons and their connections in the human brain. Although 

direct analogies between the components of ANNs and specific anatomical brain 

structures are limited, it is possible to identify some general relationships. 

Artificial neural networks are computational models inspired by the workings of the 

biological nervous system, in particular, how neurons connect and communicate with 

each other to process information. ANNs have been designed to mimic the way the 

human brain solves problems and learns from experience, making them an effective tool 

in many fields of artificial intelligence. 
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An artificial neural network is made up of processing units called "neurons" or "nodes," 

organized in layers. These layers include the input layer, one or more hidden layers, and 

the output layer. Each neuron in one layer is connected to all neurons in the next layer 

through weighted links, which represent the "strength" of the connection between two 

neurons. 

Learning in an ANN occurs through a process of adjusting the weights of the connections 

between neurons. During training, the network receives examples of labeled data, i.e., 

inputs with their corresponding desired outputs. The network processes the inputs and 

calculates an output that is compared to the desired output. If there is a discrepancy, the 

network adjusts the connection weights to minimize the error (noise). This process is 

repeated over a large number of training examples until the network reaches an 

acceptable level of accuracy. 

Artificial neural networks have proven successful in a wide variety of applications, 

including pattern recognition, classification, prediction, optimization, and control. 

Examples of applications include speech recognition, machine translation, sentiment 

analysis, fraud detection, and autonomous driving (6). 

Artificial neural networks, particularly deep neural networks (RNPs), can also leverage 

Bayesian statistics to improve accuracy and robustness in learning and decision-making. 

Bayesian inference allows neural networks to handle uncertainty and update their beliefs 

systematically as new information becomes available, which can improve the network's 

ability to adapt to unfamiliar situations and make more accurate and reliable predictions 

(7). 

Comparison between the complexity of neural responses in the human nervous system 

and artificial neural networks. 

Comparison between the response of an artificial neural network and the reflex act of the 

spinal cord: 

The spinal cord reflex act is a rapid and automatic response to a stimulus, involving the 

transmission of information through sensory and motor neurons bypassing the brain. In 

the context of an artificial neural network, this can be compared to a response generated 

by a single-layer network, where input is processed directly to produce an output without 

additional intervention (6). 

Image 1 

 

Image 1: In the image you can see a simple input and output of artificial neural networks, 

comparing their action with the reflex arc of the spinal cord. 
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Comparison between the response of an artificial neural network with a deep layer and 

the response of basal nuclei: 

The basal nuclei, which are involved in motor control, cognition, and reward, generate 

more complex responses than the spinal cord reflex act. In an artificial neural network, 

this could be compared to a deep single-layer network, where intermediate neurons 

process the input information before it reaches the output layer. This level of complexity 

allows for more sophisticated responses than those generated by a single-layer 

network(8). 

Image 2 

 

 

Image 2: This image shows a greater complexity in terms of the neural networks in Figure 

1, so their action is compared with the input of information, the interconnection of the 

basal nuclei and their response. 

Analogy between the response of a deep neural network of two or more layers and the 

response of the cerebral cortex: 

The cerebral cortex, which is responsible for high-level functions such as perception, 

thinking, and decision-making, generates even more complex responses than those of the 

spinal cord and basal nuclei. In the context of artificial neural networks, this can be 

compared to a deep network of two or more layers, where information is processed 

through multiple layers of neurons before reaching the output layer. This architecture 

allows for detection and adaptation to more complex patterns, resulting in more complete 

and sophisticated responses (9). 
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In short, artificial neural networks can reflect different levels of complexity in the human 

nervous system, from the reflex act of the spinal cord to the more elaborate responses of 

the cerebral cortex. As the depth and complexity of neural networks increases, they 

become more capable of processing and adapting to complex patterns and contexts, 

allowing for more complete and efficient responses. 

Image 3: 

 

 

Figure 3: This image shows the greater complexity in terms of neural networks in the 

examples given. Where an input layer is shown, several deep layers and an output layer, 

so its action is compared with the input of information, the interconnection of the basal 

nuclei and their response. 

Relationship between the components of artificial intelligence and the anatomical 

structures of the basal nuclei. 

The basal nuclei (also called the basal ganglia) are a set of brain nuclei involved in 

regulating movement, decision-making, and forming habits. Possible correspondences 

between the components of artificial intelligence and the anatomical structures of the 

basal nuclei are described below. 

A. Caudate and putamen core and reinforcement learning in AI 

Reinforcement learning (RL) is a type of machine learning in which an agent learns to 

make decisions by interacting with its environment. The agent takes actions in an 

environment and receives feedback in the form of rewards or punishments. The agent's 

goal is to learn a policy that maximizes cumulative reward over time. 

Q-learning and the Monte Carlo algorithm are two widely used reinforcement learning 

algorithms which are explained below. 

Q-learning: It is a reinforcement learning algorithm based on the idea of learning the 

action value function Q, which estimates the expected value of taking an action in a 

specific state and then following an optimal policy. Q-learning is a method of learning 

based on temporal differences (TD), which means that it uses current estimates from the 

Q function to iteratively update its estimates. The Q-learning algorithm is a modelless 

learning approach, as it does not require a model of the environment to learn the optimal 

policy. 

During the learning process, the agent scans its environment and updates the Q values 

using the following formula: 
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Q(s, a) <- Q(s, a) + α [R(s, a, s') + γ max_a' Q(s', a') - Q(s, a)] 

Where s and a are the current state and the current action, s' is the next state, R(s, a, s') is 

the immediate reward, α is the learning rate, γ is the discount factor, and max_a' Q(s', a') 

is the maximum value of the function Q in the next state. 

Monte Carlo algorithm: Monte Carlo methods are a class of reinforcement learning 

algorithms that use random sampling to estimate value functions and optimal policies. 

Unlike Q-learning, Monte Carlo methods are episodic-based learning algorithms, which 

means that value function updates are made at the end of each episode rather than at each 

step. 

The Monte Carlo algorithm uses the average of the return rewards of entire episodes to 

estimate the value function. As more episodes are generated and different trajectories are 

sampled in the environment, value function estimates become more accurate. Through 

this process, the agent can learn an optimal policy based on value function estimates. 

In summary, Q-learning and the Monte Carlo algorithm are two different approaches to 

solving reinforcement learning problems. Q-learning is a time-difference-based method 

that updates the Q values at each step, while the Monte Carlo algorithm uses random 

sampling and averages of complete episode returns to estimate the value function. Both 

algorithms have applications in various fields and have been successfully used in a wide 

variety of tasks and domains. 

The caudate nucleus and putamen, collectively known as the striatum, are involved in 

reward-based learning and habit formation. In AI, reinforcement learning algorithms, 

such as Q-learning and the Monte Carlo algorithm, can be considered analogous to these 

structures, as they both seek to learn and optimize actions based on the rewards and 

consequences of the environment (10). 

B. Pale Globe and Motor Control in AI 

In the context of artificial intelligence, a PID (Proportional, Integral, Derivative) 

controller can be used to regulate and optimize the behavior of an intelligent agent or 

algorithm. The PID controller can be applied in machine learning control and adaptation 

systems, robotics and other areas where a quick and accurate response to changes in 

environmental conditions is required. 

In artificial intelligence, the PID controller can be used to dynamically adjust the 

parameters of an algorithm or the behavior of an intelligent agent based on its 

performance and environmental conditions. By combining the proportional, integral, and 

derivative components, the PID controller can improve the efficiency and stability of a 

machine learning system or intelligent agent, helping to minimize error and adapt to 

changes in real time. 

Proportional (P): This component is based on the current error and adjusts the output 

proportionally to the present error. If the error is large, the correction will be more 

significant. However, there can be a constant residual error called steady-state error. 

Integral (I): This component takes into account the accumulation of past errors and acts to 

eliminate the steady-state error. It adjusts the output based on the sum of errors 

accumulated over time, helping to improve system accuracy. 

Derivative (D): This component is based on the rate of change of the error with respect to 

time and acts to predict the future behavior of the error. Provides anticipatory control 

action and improves system stability by reducing oscillation and over-oscillation (11). 
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For example, in robotics, a PID controller could be used to regulate the speed and 

direction of an autonomous vehicle or to adjust the movement of a robotic arm based on 

feedback received from sensors. In reinforcement learning, the PID controller could 

adjust an algorithm's parameters, such as learning and exploration rates, to improve agent 

performance and adaptability over time. 

The globus pallidus, a structure of the human brain, plays an important role in regulating 

and coordinating movements and actions. Just as the globus pallidus modulates motor 

activity, so do certain algorithms and techniques in the field of artificial intelligence, such 

as the PID controller and optimal trajectory planning. Below are more specific examples 

of how these AI techniques relate to the functions of the globus pallidus (12): 

PID controllers are used in robotics and prosthetics, autonomous navigation, and motor 

control in video games and simulations to improve the accuracy and stability of motion. 

These controllers make it possible to adapt to changing conditions in real time, ensuring 

smooth and precise movements in robotic arms, autonomous vehicles and video game 

characters, as well as in optimal trajectory planning and obstacle avoidance (13). 

C. Substantia nigra and dopaminergic modulation in AI 

The substantia nigra is a brain structure that produces dopamine, a neurotransmitter 

essential for reward-based learning and movement regulation. In AI, reward signal 

modulation and regulation mechanisms, such as adaptive learning rate and reward 

normalization schemes, can be considered analogous to this structure, as they both adjust 

and modulate the reward signal to enhance learning and adaptation to changing 

environmental conditions (14). 

D. Subthalamic Nucleus and Decision Making in AI 

The subthalamic nucleus is involved in decision-making and movement control, 

especially in the selection and execution of motor actions. In AI, decision-making and 

action selection algorithms, such as hierarchical planning and model-based optimization, 

can be considered analogous to this structure, as they both seek to select and coordinate 

the right actions to meet the goals and constraints of the environment (15). 

Nuclei of the thalamus and their analogy with AI 

A. Anterior nuclei of the thalamus and memory systems in AI 

The anterior nuclei of the thalamus play a critical role in the formation and processing of 

memory in the human brain. In the context of artificial intelligence (AI), functional 
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aspects of these thalamic nuclei can be extracted to inspire and improve algorithms and 

approaches related to the storage and retrieval of information in AI systems. Below are 

specific examples of how the function of the anterior nuclei of the thalamus could be 

emulated in AI: 

Associative memory networks: The anterior nuclei of the thalamus are involved in 

forming associations between different pieces of information. The formation of 

associations between different pieces of information is a key process in the consolidation 

of memory and in the understanding of complex concepts and events. The anterior nuclei 

of the thalamus facilitate this process by receiving information from various areas of the 

brain, such as the prefrontal cortex, amygdala, and hippocampus, and then transmitting 

this information to other regions of the brain. 

For example, when we learn something new, our brain needs to relate that information to 

previous knowledge and store it efficiently for later retrieval. The anterior nuclei of the 

thalamus act as a kind of "exchange center," where different types of information, such as 

sensory, emotional, and cognitive details, are combined and processed. This allows the 

brain to form connections between seemingly unrelated information, which ultimately 

helps enrich our understanding of the world and improve our ability to remember and 

access this information in the future (16,17). 

In AI, this could be implemented through the use of associative memory networks, such 

as Hopfield networks or self-associative memory networks, which allow for the storage 

and retrieval of associated information patterns based on the similarity and relationship 

between them. 

Hopfield networks are a type of recurrent artificial neural network that is primarily used 

to solve optimization problems and to store and retrieve associative memory patterns.  

A Hopfield network consists of interconnected neurons, where each neuron is connected 

to all other neurons (except itself) with a synaptic weight. Neurons can have a binary 

state, i.e. be on (+1) or off (-1). 

The Hopfield network works iteratively, updating the state of neurons based on the states 

of the connected neurons and synaptic weights. The network eventually converges to a 

steady state, called an "attractor," which may represent a solution to the optimization 

problem or a pattern stored in memory (18). 

Basic example: 

A Hopfield network stores and retrieves a simple pattern, such as a letter "T" on a 3x3 

grid. The pattern of the letter "T" would look like this: 

 

Here, "+1" represents an activated neuron (white) and "-1" represents an activated neuron 

(black). 

To store this pattern in the Hopfield network, we first initialized the synaptic weights 

between neurons using the "Hebb learning rule." Then, to retrieve the stored pattern, we 

provide a partially correct or noisy input pattern to the network. For example, we could 

provide the following pattern with noise: 
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The Hopfield network will iteratively update the state of the neurons until it converges to 

a steady state, which in this case, will be the original pattern of the letter "T." In this way, 

the Hopfield network can store and retrieve associative memory patterns despite noise or 

partial inputs. 

Short-term and long-term memory: The anterior nuclei of the thalamus also play a role in 

consolidating and transferring information between short-term memory and long-term 

memory. In AI, this can be addressed using dual-level memory structures, such as LSTM 

(Long Short-Term Memory) networks or GRU (Gated Recurrent Unit) networks, which 

allow AI systems to retain temporally relevant information in short-term memory and 

consolidate important information into long-term memory. 

LSTM (Long Short-Term Memory) networks and GRU (Gated Recurrent Unit) networks 

are recurrent neural network (RNN) architectures designed to address the problem of 

short-term forgetting and gradient fading in traditional RNNs. These architectures allow 

networks to learn how to capture long-range temporal dependencies on data streams. 

LSTM: 

LSTM networks introduce a structure called a "memory unit" that contains three "gates" 

(in, forget, and out). These gateways allow the network to decide when to add new 

information to short-term memory, when to remove irrelevant information, and when to 

allow stored information to influence the current output. By regulating the flow of 

information through these gateways, LSTMs can learn long-range temporal dependencies 

more effectively than simple RNNs. 

GRU: 

GRU networks are a simplified variant of LSTMs that also address the problem of short-

term forgetting and gradient fading. Instead of using three gates like LSTMs, GRUs have 

only two gates: the upgrade gate and the reset gate. The refresh gate determines which 

information from the previous memory is retained and which is discarded, while the reset 

gateway controls how past information is combined with current information. Although 

GRUs are less flexible than LSTMs, they generally have fewer parameters and are 

therefore faster and more computationally efficient. 

Main differences: 

LSTMs have three gates (in, forget, and out), while GRUs have only two (update and 

reset). 

LSTMs are typically more flexible and can capture more complex temporal 

dependencies, but they are computationally more expensive due to the greater number of 

parameters. 

GRUs are a simplified version of LSTMs with fewer parameters, making them faster and 

more computationally efficient, although they might be less able to capture very complex 

time dependencies. 

The anterior nuclei of the thalamus are involved in the selection and retrieval of relevant 

information, as well as in the adaptability and plasticity of memory. In AI, these processes 

can be implemented using attention and focus mechanisms, such as softmax or local 

attention, and learning algorithms that dynamically adjust their weights and connections, 
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such as Hebbian learning or backpropagation error learning. These techniques allow AI 

systems to select relevant information and adapt to new situations (19). 

B. Lateral nuclei of the thalamus and sensory processing in AI 

The lateral nuclei of the thalamus are involved in the processing of sensory information, 

especially in the visual modality. In AI, convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) that process visual and temporal signals could be 

related to these cores, as both structures are designed to process sensory information and 

extract relevant features. 

The lateral nuclei of the thalamus are essential in sensory processing and in the 

transmission of sensory information to the human brain. These anatomical structures are 

involved in the processing of sensory information from the visual, auditory, and 

somatosensory systems. In the context of artificial intelligence (AI), functional aspects 

can be extracted from the lateral nuclei of the thalamus to improve and design algorithms 

and approaches related to the processing and interpretation of sensory information in AI 

systems. Below are specific examples of how the function of the lateral nuclei of the 

thalamus could be emulated in AI using convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs): 

The lateral nuclei of the thalamus are involved in the filtering and processing of sensory 

signals, the integration and fusion of sensory information, sensory attention and focus, 

and sensory adaptability and learning. In AI, CNNs can detect and extract relevant 

features from sensory data, while the combination of CNNs and RNNs allows 

information from different modalities to be integrated. Attention mechanisms improve 

selection and concentration on relevant sensory information, and learning algorithms 

allow AI systems to adapt to changes in the environment and improve their interpretation 

of sensory information (19,20). 

C. Medial nuclei of the thalamus and decision-making in AI 

The medial nuclei of the thalamus are involved in decision-making and action planning. 

In AI, reinforcement and planning learning algorithms, such as Q-learning and the Monte 

Carlo algorithm, can be considered analogous to these cores, as they both seek to 

optimize actions and decisions based on goals and rewards (21). 

D. Intralaminar nuclei of the thalamus and synchronization in AI 

The intralaminar nuclei of the thalamus are involved in the synchronization and 

modulation of neuronal activity throughout the brain. In AI, attention mechanisms, such 

as auto-regressive attention and softmax attention (22). 

In AI, auto-regressive attention and softmax attention are attention mechanisms used in 

deep learning models, such as neural networks, to improve the selection, processing, and 

interpretation of relevant information in complex, sequential data. These mechanisms are 

especially important in tasks such as natural language processing (NLP), computer vision, 

machine translation, and speech recognition, among others. The following is a brief 

description of both mechanisms in the context of AI: 

Auto-regressive attention: In AI, auto-regressive attention is an approach that allows deep 

learning models, such as recurrent neural networks (RNNs) and Transformer models, to 

capture and model temporal and sequential dependencies on data. RNNs and 

Transformers models are two types of deep learning architectures widely used in the field 

of artificial intelligence (AI) to address problems involving sequential or temporal data, 

such as natural language processing (NLP). This mechanism allows the model to take into 

account the history of the sequence to improve the prediction of future elements, which is 

essential in tasks such as text generation, machine translation, and sentiment analysis, 

where dependencies between words and phrases play a crucial role in understanding and 

generating semantically coherent content(23). 
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Softmax attention: Softmax attention is another attention mechanism used in AI to allow 

deep learning models to selectively weight and focus on relevant information based on its 

importance. Instead of treating all information equally, softmax attention allows models 

to assign attention weights to different parts of the input information, allowing them to 

focus on the most relevant parts and discard the less relevant ones. This approach is 

useful in tasks such as natural language processing, computer vision, and speech 

recognition, where relevant information may be scattered and not contiguous in the input 

data. 

The intralaminar nuclei of the thalamus are a set of nuclei found within the thalamus, a 

brain structure that plays an important role in the integration and processing of 

information. These intralaminar nuclei are involved in various brain functions, including 

the synchronization of neuronal activity and the modulation of consciousness and 

attention. In the context of artificial intelligence (AI), the functional aspects of the 

intralaminar nuclei of the thalamus can inspire algorithms and approaches related to the 

synchronization and coordination of processes and tasks in AI systems, involving auto-

regressive attention, softmax attention, and recurrent neural networks (RNNs). Below are 

specific examples of how the function of the intralaminar nuclei of the thalamus could be 

emulated in AI: 

The intralaminar nuclei of the thalamus are involved in neuronal synchronization, task 

coordination, and modulation of attention and consciousness. In AI, RNNs with auto-

regressive attention mechanisms and softmax can be used to model the interaction 

between areas, selectively focus relevant information, and adapt resource allocation 

according to the demands of the task. These mechanisms improve the efficiency of the 

system and allow for better adaptability in changing situations and noisy environments 

(24). 

E. Median nuclei of the thalamus and emotional information processing in AI 

The median nuclei of the thalamus, also known as the medial dorsal nuclei of the 

thalamus, play a crucial role in the processing and integration of emotional information in 

the human brain. These thalamic structures are closely interconnected with several areas 

of the brain involved in emotion, such as the amygdala, hippocampus, cingulate cortex, 

and prefrontal cortex. Together, these brain regions are involved in modulating emotions, 

emotional memory, and making emotionally relevant decisions (25). 

In the context of artificial intelligence (AI), the processing of emotional information can 

be critical to the development of more advanced and human-like systems. Current 

techniques in AI, such as deep learning and neural networks, have allowed AI systems to 

begin to address aspects of emotion in their processing and response generation. For 

example, detecting emotions in text, images, or voice signals can be used to create more 

empathetic and adaptive chatbots or recommendation systems that are sensitive to the 

user's emotional state. 

To address the complexity of emotional information processing, artificial neural networks 

can use different architectures, such as convolutional neural networks (CNNs) for image 

analysis and facial expression, and recurrent neural networks (RNNs) and Transformer 

models for text and emotion analysis in language. Auto-regressive attention and softmax 

attention, which are key features in Transformer models, can improve the ability of these 

networks to capture the emotional and semantic relationships between words and 

sentences (26,27). 

Analogous to the role of the median nuclei of the thalamus in the human brain, AI 

architectures can integrate emotional information from various sources, allowing AI 

systems to interact and respond in more humane and personalized ways. Importantly, 

however, despite these advances, today's AI is still far from matching the complexity and 

richness of human emotional processing. 
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F. Reticular nucleus of the thalamus and control of neuronal activity in AI 

The reticular nucleus of the thalamus (NRT) is a sheet-like structure that surrounds the 

thalamus and plays an essential role in regulating and controlling thalamic neuronal 

activity in the human brain. The NRT is the main modulator of information passing 

through the thalamus and is closely involved in functions such as selective attention, 

control of the sleep-wake cycle, and the generation of neural rhythms, such as the teat and 

gamma oscillations (28). 

In the context of artificial intelligence (AI), controlling neural activity and regulating the 

flow of information are also key aspects of ensuring the efficiency and effectiveness of AI 

systems. At the level of AI architectures, auto-regressive attention and softmax attention 

in Transformer models are techniques that, in a sense, emulate the information selection 

and filtering function performed by NRT in the human brain. 

In terms of controlling neural activity, AI can use algorithms that mimic some of the 

functions of NRT, such as regulating activity in artificial neural networks to ensure 

stability and avoid saturation of processing units. For example, recurrent neural networks 

(RNNs) and long-term and short-term memory networks (LSTMs) can learn to regulate 

their own neural activity over time in response to data inputs. 

In terms of generating neural rhythms, techniques such as reinforcement learning, in 

particular algorithms such as Q-learning and Monte Carlo, can allow artificial neural 

networks to generate more efficient and adaptable activity patterns. These algorithms can 

help adjust neural network weights and connections based on feedback and results 

obtained during training (6) 

Image 5 
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Figure 5: Analogies of the functions of the thalamus nucleus as represented by the 

functions of different components of AI: CNN (Convolutional Neural Networks), RNN 

(Recurrent Neural Networks), LSTM (Long Short Memory), GRU (Gated Recurrent 

Unit), NLP (Natural Language Processing) 

The amygdala, emotions, and AI.  

The amygdala is an almond-shaped structure located in the human brain, which plays a 

crucial role in processing emotional information, forming emotional memories, and 

making emotion-based decisions. The amygdala is also involved in functions related to 

detecting threats and regulating fear and anxiety responses (29). 

In the context of artificial intelligence (AI), incorporating emotional aspects into 

decision-making and behavior can provide a more humane and realistic approach to AI 

systems. Although machines don't experience emotions in the human sense, AI systems 

can be designed and programmed to recognize and process emotional signals in input data 

and adapt their behavior accordingly. 

One of the ways this can be achieved is by using artificial neural networks, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), to process 

emotional data and generate emotional representations in the machine. These networks 

can be trained on datasets labeled with emotional information to learn to recognize 

emotional patterns and adapt their behavior accordingly (26). 

In addition, AI systems can also use reinforcement learning algorithms, such as Q-

learning and the Monte Carlo algorithm, to adjust their actions based on emotionally 

relevant feedback. These algorithms allow AI to learn through trial and error, maximizing 

emotional reward (such as user satisfaction) and minimizing emotional penalties (such as 

user frustration or disappointment). 

Another focus in AI that relates to the function of the amygdala is the development of 

artificial emotional agents that can interact with humans and express emotions more 
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naturally and realistically. These agents can be useful in applications such as AI-assisted 

therapy, personalized learning, and online social interaction. 

Relationship between the hippocampus and AI: Memory and spatial learning. 

The hippocampus is a seahorse-shaped structure located in the human brain, and it plays a 

critical role in memory formation, learning, and spatial navigation. Neuroscience research 

has shown that the hippocampus is involved in the consolidation of short-term memory 

into long-term memory and in the formation of cognitive maps of the environment 

(30,31). 

Artificial intelligence (AI) can benefit from understanding how the hippocampus works 

and applying similar principles in the design of machine learning and navigation systems. 

Some areas of interest in AI that relate to hippocampal functions include: 

Memory and learning: Artificial neural networks, such as recurrent neural networks 

(RNNs) and long-term memory networks (LSTMs), can be inspired by the structure and 

function of the hippocampus to improve its ability to learn and retain information over 

time. These networks are designed to address short-term memory problems and can store 

information temporarily in a stream of data (27). 

Spatial learning and navigation: AI systems that require navigating physical 

environments, such as mobile robots or autonomous vehicles, can benefit from algorithms 

and techniques inspired by the spatial navigation function of the hippocampus. 

Convolutional neural networks (CNNs) play an important role in spatial learning and 

navigation, as they can process visual information and recognize relevant features of the 

environment. By extracting and learning spatial patterns and features from input data, 

CNNs make it easier to understand and represent the environment in which the agent 

moves (26). 

Reinforcement learning algorithms, such as Q-learning and the Monte Carlo algorithm, 

and PID (Proportional, Integral, Derivative) controllers can be used to develop navigation 

systems that learn to move and plan routes efficiently in unfamiliar environments. The 

PID controller can adjust and optimize agent actions in real-time, enabling more accurate 

and stable navigation by addressing issues such as trajectory tracking and speed control. 

Together, these techniques, including CNNs, enable AI systems to learn and adapt to 

dynamic and complex environments (13). 

Cognitive models of the environment: Neuroscience research has identified specific cells 

in the hippocampus, such as place cells and grid cells, that are involved in the 

representation and mapping of space. AI can use techniques such as simultaneous 

localization and mapping (SLAM) and deep learning to develop internal models of the 

environment that allow AI systems to navigate and understand their environment in a 

similar way to how humans do (32,33). 

Reticular training and AI 

Reticular formation is a complex network of neurons located in the brainstem that plays a 

crucial role in regulating functions such as attention, awareness, and brain activation (34). 

In the context of artificial intelligence (AI), lattice training can be relevant in a number of 

ways: 

Attention: Reticular formation modulates attention and filters irrelevant information, 

allowing organisms to focus on relevant stimuli. In AI, similar attention mechanisms, 

such as auto-regressive attention and softmax attention, can be used to focus processing 

on relevant information and optimize performance on specific tasks (35,36). 

Arousal and activation: Reticular formation regulates levels of arousal and awareness 

depending on the situation and the demands of the environment. AI could incorporate 

similar triggering mechanisms to dynamically adapt to different contexts and operational 
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states, adjusting the intensity of its computational resources according to the needs of the 

task (37,38). 

Multisensory integration: Reticular formation also contributes to the integration of 

sensory information from different sensory modalities. AI systems can apply multisensory 

fusion techniques, such as convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), to process and integrate information from various sources in a 

coherent and efficient manner (26,39). 

Relationship between the structure of artificial intelligence and Brodmann's brain areas. 

Brodmann areas are regions of the brain defined by their cellular organization and are 

related to specific brain functions. Possible correspondences between the structure of 

artificial intelligence and several areas of Brodmann are described below. 

A. Brodmann's Area 4 (Primary Motor Cortex) and Motor Control in AI 

Brodmann's area 4 is involved in motor control and the execution of movements. In AI, 

motor control and motion planning algorithms, such as PID controller and optimal 

trajectory planning, can relate to this area, as they both seek to regulate and coordinate the 

movements and actions of AI systems (11,40). 

B. Brodmann's Area 17 (Primary Visual Cortex) and Visual Processing in AI 

Brodmann's area 17 is involved in visual processing and the detection of basic visual 

features. In AI, convolutional neural networks (CNNs) that process visual signals and 

extract relevant features can relate to this area, as they are both designed to process visual 

information and detect important features (26,41). 

C. Brodmann's Areas 44 and 45 (Broca's Areas) and Language Processing in AI 

Brodmann's areas 44 and 45, also known as Broca's areas, are involved in language 

processing and speech production. In AI, natural language processing models, such as 

recurrent neural networks (RNNs) and transformer networks, can relate to these areas, as 

they both seek to understand and generate human language. Auto-regressive attention, a 

technique used in some transformer models, allows AI systems to focus on relevant parts 

of the text during processing, improving language understanding and generation by 

considering the context in which each word or linguistic element is located. Thus, auto-

regressive attention enriches the analysis and generation of language in AI models, 

establishing a closer connection with the functions of the human brain associated with 

Broca's areas (6,7,42). 

D. Brodmann's Area 24 (anterior cingulate cortex) and decision making in AI 

Brodmann's area 24, located in the anterior cingulate cortex, is involved in decision-

making and emotional regulation. In AI, reinforcement learning algorithms and emotional 

agents can relate to this area, as they both seek to make optimal decisions based on goals, 

rewards, and emotions (42,43). 

E. Brodmann's Area 41 (Primary Auditory Cortex) and Auditory Processing in AI 

Brodmann's Area 41 is involved in auditory processing and the detection of basic auditory 

features. In AI, convolutional and recurrent neural networks that process auditory signals 

and extract relevant features can relate to this area, as they are both designed to process 

auditory information and detect important features (38,44). 

These analogies between Brodmann's areas and the structure of artificial intelligence 

suggest that AI systems can draw inspiration from the organization and functioning of 

these brain areas to improve their ability to learn, adapt, and function in various domains 

and tasks. 

 



177 From Artificial Intelligence and Bayesian Statistics to Neuroanatomy: Connections, 

Analogies, and Applications  
 
Bayesian statistics and the brain. 

Relationship between Bayesian statistics and the anatomical structures of the basal 

ganglia. 

Bayesian statistics is an inference approach that uses probability to update beliefs about 

uncertain events. In relation to the anatomical structures of the basal ganglia, several 

correspondences can be established between the components of Bayesian statistics and 

these structures. First, the caudate nucleus and putamen, involved in reward-based 

learning and habit formation, resemble a priori probability insofar as they store prior 

information about events and actions that have been rewarded in the past. Second, the 

globus pallidus, involved in the regulation of movement and the inhibition of unwanted 

motor actions, can be considered analogous to the likelihood of plausibility, insofar as it 

helps to assess whether or not a specific action is appropriate based on the sensory 

information received and contextual demands. Third, the substantia nigra, which produces 

dopamine, plays a key role in reward-based learning and updating our expectations about 

actions, thus resembling probability after the fact. Finally, the subthalamic nucleus, 

involved in decision-making and movement control, resembles Bayes' theorem insofar as 

it integrates previous information (stored in the caudate nucleus and putamen) and new 

sensory information (processed by the globus pallidus) to make informed decisions about 

what actions to take. In summary, Bayesian statistics and the anatomical structures of the 

basal ganglia are interconnected and offer possibilities for improving motor control and 

coordination, especially in artificial intelligence systems that involve physical actions 

such as robots and autonomous vehicles (12,45). 

Bayesian Statistics and the Anatomical Structures of the Thalamus 

Possible correspondences between the components of Bayesian statistics and the 

anatomical structures of the thalamus are described below: 

The anterior, lateral, medial, intralaminar, and median nuclei of the thalamus can be 

related to the fundamental concepts of Bayesian statistics, such as a priori probability, 

likelihood probability, and a posteriori probability, as well as Bayes' theorem. The 

anterior nuclei of the thalamus can be considered analogous to a priori probability, as they 

store prior information about events and expectations. Lateral nuclei could be analogous 

to likelihood of plausibility, as they assess the correspondence between the sensory 

information received and our expectations based on previous events. Medial nuclei could 

be analogous to a posteriori probability, as they update our expectations and beliefs based 

on the sensory and cognitive information available. Intralaminar and median nuclei could 

relate to Bayes' theorem, as they combine previous and new information to update our 

beliefs and expectations. In addition, the reticular nucleus of the thalamus and geniculate 

nuclei modulate sensory information, adjusting it based on our expectations and attention 

before sending it to higher cortical areas for more accurate processing. The integration of 

these cores and concepts of Bayesian statistics into artificial intelligence may lead to 

more sophisticated and adaptive systems, which process and act on information in a 

similar way to how biological organisms do (46,47). 

Bayesian Statistics and Reticular Formation 

The relationship between Bayesian statistics and lattice formation could be established 

based on how both processes contribute to adaptability and adjustment in decision-

making and information processing. 

The relationship between lattice formation and Bayesian statistics can be established in 

the context of artificial intelligence and human brain modeling. AI systems could use 

Bayesian statistics to simulate the workings of the lattice formation, adjusting its level of 

arousal and attention according to incoming information and context. In this way, AI 

systems could dynamically adapt and focus on relevant tasks in a similar way to how 

humans do (34,36,39,45,48). 
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Relationship between Bayesian statistics and Brodmann areas. 

A priori probability represents our initial beliefs about an event before we look at new 

data. Brodmann's area 46, located in the dorsolateral prefrontal cortex, is involved in 

working memory and decision-making, and stores prior information about events and 

expectations that guide our decisions and actions. 

The probability of likelihood in Bayesian statistics reflects the probability of looking at 

the given data for a particular event. Brodmann's area 17, located in the primary visual 

cortex, is involved in the initial processing of visual information and evaluates the 

correspondence between the received visual information and our expectations based on 

previous events. 

A posteriori probability in Bayesian statistics is the actualization of our beliefs after 

looking at new data. Brodmann's area 10, located in the anterior prefrontal cortex, is 

involved in higher cognitive functions, such as planning and decision-making, and 

updates our expectations and beliefs based on available sensory and cognitive 

information. 

Bayes' theorem describes how to combine a priori probability and likelihood to obtain a 

posteriori probability. Brodmann's area 7, located in the posterior parietal cortex, is 

involved in the integration of sensory and cognitive information and the formation of 

internal representations of space, and could be considered analogous to Bayes' theorem 

insofar as it integrates prior information and new sensory information to actualize our 

beliefs and expectations (5,42). 

Bayesian Statistics and the Amygdalar Nucleus 

By combining Bayesian statistics with the amygdala core, we can develop AI systems that 

are capable of learning and adapting to varying emotional situations and contexts. These 

systems could be used in a wide variety of applications, from detecting and analyzing 

emotions in human interactions to adapting AI systems to respond appropriately to 

people's emotional needs. 

For example, AI systems based on the Bayesian approach could be developed that are 

capable of recognizing and analyzing people's facial expressions and emotions. These 

systems could progressively learn and adapt to new emotional contexts as they receive 

feedback and new data samples. 

Likewise, artificial intelligence systems that incorporate Bayesian statistics and are 

inspired by the amygdala core can improve the empathy and adaptability of 

conversational agents or chatbots, allowing a more human and personalized interaction 

with users (43,49). 

Bayesian statistics and the hippocampus. 

By relating Bayesian statistics to the hippocampus, we can develop AI systems that are 

capable of learning and adapting to new situations and contexts in a similar way to how 

humans do. These systems could benefit from the Bayesian approach's ability to adapt 

their beliefs and knowledge based on available information and previous experiences. 

For example, AI systems using Bayesian statistics could be applied in the field of 

navigation and trajectory planning. Inspired by the role of the hippocampus in spatial 

orientation, these systems could update their cognitive maps and position estimates based 

on new sensory data and previous experiences. 

In addition, artificial intelligence systems based on the Bayesian approach could be used 

to model memory and learning in applications such as pattern recognition, classification, 

and prediction. These systems could learn incrementally and adapt to new contexts and 

situations as they receive feedback and new data (43,50,51). 
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Information Processing in the Human Brain and Its Relationship to Bayesian Statistics 

and AI 

Artificial intelligence (AI), Bayesian statistics, and anatomical brain structures share 

fundamental principles and mechanisms in terms of information processing, belief 

actualization, and decision-making based on observed evidence. Below is a synthesis of 

how these three elements relate and interact in the framework of decision-making and 

learning. 

A. Artificial Intelligence and Data-Driven Learning 

AI, particularly machine learning and artificial neural networks (ANNs), uses algorithms 

inspired by the human brain to learn patterns and relationships in data. Learning is based 

on adapting and optimizing model parameters to maximize its ability to represent and 

predict information based on observed evidence (3,19,52). 

B. Bayesian Statistics and Evidence-Based Decision Making 

Bayesian statistics provides a formal framework for updating beliefs and making 

evidence-based decisions. The Bayesian formula combines a priori probability (prior 

knowledge) with likelihood (fit to data) to derive posterior probability, which represents 

the updated belief about a hypothesis based on the evidence (3,29). 

C. Anatomical Brain Structures and Information Processing 

Brodmann's brain areas, the basal ganglia (including the caudate nucleus, putamen, 

globus pallidus, substantia nigra, and subthalamic nucleus), and thalamus nuclei are 

involved in the processing and integration of sensory, motor, and cognitive information in 

the human brain. These structures are involved in the formation and storage of prior 

knowledge, the updating of beliefs based on observed evidence, and the making of 

decisions based on integrated information (5,28,42,47). 

D. Integration and analogies 

AI and Bayesian statistics can be thought of as computational and mathematical models 

that attempt to emulate aspects of information processing and decision-making in the 

human brain. Although there are no direct correspondences between ANNs, the Bayesian 

formula, and anatomical brain structures, there are analogies and similarities in terms of 

the underlying principles and mechanisms (18,19,45). 

In summary, AI, Bayesian statistics, and anatomical brain structures share fundamental 

concepts related to information processing, belief actualization, and decision-making 

based on observed evidence. These analogies and similarities can be useful for 

understanding and designing more efficient and robust AI systems, as well as gaining 

deeper insight into the workings and organization of the human brain. 

 

Conclusion. 

In conclusion, the interrelationship between artificial intelligence (AI), Bayesian 

statistics, and brain structures provides a fascinating perspective on how AI technologies 

can simulate and improve certain aspects of human cognition. The ability of Bayesian 

statistics to update and adapt beliefs as new information is acquired is essential in the 

development of more efficient and adaptable AI systems, capable of learning and 

adjusting to different contexts and situations. 

Throughout the text, the relevance of different brain structures in the context of AI and 

Bayesian statistics has been explored, showing how decision-making, attention, learning, 

memory and emotions can be linked to different areas of the brain. AI can benefit from 

simulating some of the functions of these structures, allowing for greater adaptability and 

efficiency in problem-solving and decision-making. 
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The knowledge gained by relating these elements can guide the design and 

implementation of AI systems that are increasingly advanced and closer to the way 

humans acquire, process, and update information. This is critical for the development of 

AI systems that can interact effectively and understandably with humans, enabling an 

increasingly seamless integration of AI into our daily lives and offering more advanced 

solutions to complex problems in various fields, from medicine to robotics. 
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