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Abstract 

In order for there to be adequate territorial planning, an orderly occupation of the 

territory is necessary; The main input is reliable information on land cover. Therefore, in 

recent times, new remote sensing methods have been born that need to be tested. This 

research compared the accuracy of the traditional remote sensing method, Maximum 

Likelihood (ML), versus an artificial intelligence-based method called Random Forest 

(RF), in the detection of banana, cocoa and palm crops (in addition to other covers). 

Satellite imagery from Landsat-8 and Sentinel-2 was used, which was downloaded from 

the USGS website; the bands in the Sentinel-2 image were atmospheric correction 

applied with QGIS plugins created by Congedo (2021). For the two images, the spectral 

indices NDVI, GNDVI, GCI and MSI were calculated, and the regions of interest (ROIs) 

were created on the stack of calculated indices of each image; For the creation of ROIs 

(both for training and validation of results) coordinates were taken in situ and from 

Google Earth Pro version 7.3.4.8642. ML classification was performed in ENVI 5.3 

software and RF classification was performed in QGIS 3.22.7 with Dzetsaka tools created 

by (Karasiak, 2019). For the validation of results, the traditional confusion matrix and 

the Kappa coefficient proposed by Cohen (1960). The results showed that RF is slightly 

superior to ML, although with certain nuances. In general, the classification of Sentinel-2 

with RF obtained better accuracy (89%), although for the detection of the aforementioned 

crops it was the least accurate.  
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1. Introduction 

Ecuador is a country with a large number of agricultural crops that allow it to supply part 

of the national and international market (Salmoral et al., 2018); These crops include 

bananas (Musa × paradisiaca), cocoa (Theobroma cacao) and African palm (Elaeis 

guineensis). These agricultural activities provide numerous economic and social benefits 

that improve the quality of life of the population (Gama-Rodrigues et al., 2021; Osvaldo 
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Bardomiano, 2014; Sánchez Castañeda, 2017). According to the Agricultural Public 

Information System (SIPA), between 2010-2021 the average annual harvested area of 

banana, cocoa and palm crops in the country was 181570.83 ha, 449622.92 ha and 

219265.17 ha, respectively; In the same period, banana, cocoa (dried almond) and palm 

crops produced an annual average of 6742078.75 t, 225741.08 t and 2800278.667 t, with 

average annual yields of 37.28 t*ha-1 , 0.49 t*ha-1 and 12.83 t*ha-1, in the same order 

(SIPA, 2021). In addition, the province of Los Ríos is part of the group of three provinces 

in which 70% is produced at the national level (MCPEC et al., 2014). 

From the above figures, it is evident that agriculture plays an important role in the 

economic and social development of the province of Los Ríos (the second most suitable 

agro-productive area at the national level) and in Ecuador; However, the distribution of 

these crops occurs without territorial planning according to the type of soil (Ministry of 

Agriculture, Livestock, Aquaculture and Fisheries, MAGAP, 2016; Salmoral et al., 2018). 

The main negative impact generated by inadequate land use planning is its degradation 

(Leng et al., 2020), so an orderly occupation of the territory is needed. For this, accurate 

information on current land cover is essential (Borràs et al., 2017).  

With remote sensing, new arable hectares can be established, taking into account the 

behavior of the phenology of the species (Caparrós & Rodríguez-Galiano, 2020). 

Likewise, crop detection provides real information on the current use of the territory to 

propose and implement anticipatory measures (risk management) in the event of adverse 

climatic events (Giménez & Castaño, 2012). On the other hand, analysing the changes 

that are generated in the territory, estimating the eventual harvest and the classification of 

land use using high and medium resolution multispectral images, are also varied 

functionalities offered by remote sensing (Egea-Cobrero et al., 2018; Vélez & Álvarez, 

2020).  

In response to the need for information on land use and land cover, conventional methods 

have been used to classify multispectral images; However, with the passage of time, 

artificial intelligence and machine learning techniques have emerged (Cánovas-García et 

al., 2016). Among the alternate possibilities mentioned can be artificial neural networks, 

support vector machines, fuzzy theory, and decision trees (Mather & Tso, 2016). This 

research compares the performance of the traditional Maximum Probability (ML) method 

versus a decision tree-based technique, called Random Forest (RF), for the detection of 

bananas, cocoa and palm from Landsat-8 and Sentinel-2 multispectral images. Despite the 

fact that the results obtained with Random Forest are slightly higher, in different nuances, 

Maximum Likelihood was better. All of this was analyzed in the results and discussion of 

this research.  

 

2. Materials and methods 

2.1. Location 

The study was conducted in the province of Los Ríos, Ecuador (cantons Baba, Vinces, 

Mocache and Palenque) (see Figure 1). The average temperature of the site is 25ºC, and 

usually fluctuates between 24ºC and 27ºC. The area has a rainy season (from December 

to May) and a dry season; The maximum rainfall in the rainy season is 429 mm 

(February). At the study site, soils with fine, moderately coarse and fine textures 

predominate (GADPR, 2015). 
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Figure 1. Spectral images used and study area 

Source: USGS Science for a changing world (USGS, n.d.) 

2.2. Download and pre-processing of multispectral images 

The images were downloaded from the USGS Earth Explorer website. The Landsat-8 

image is from the satellite program's Collection 1 Level 2 (with atmospheric correction) 

and was requested via email; The resolutions of its bands are 15 m (band 8), 30 m (bands 

1, 2, 3, 4, 5, 6 and 7) and 100 m (bands 10 and 11). The Sentinel-2 image is of level 1C 

(no atmospheric correction) and was downloaded directly from the aforementioned 

website; the resolutions of its bands are 10 m (bands 2, 3, 4 and 8), 20 m (bands 5, 6, 7, 

8A, 11 and 12) and 60 m (bands 1, 9 and 10) ( see Table 1).  

Table 1. Information from the multispectral images used.  

Image Information 

 Landsat-8 Sentinel-2 

Spatial resolution (m) 15, 30 and 100 10, 20 and 60 

Number of Bands 11 13 

Date 27-11-2016 17-04-2018 

Percentage of cloud cover 8.99% 4.32% 

DATUM & Map Projection WGS84 WGS84 

UTM Zone 17 South 17 South 

Other 

It belongs to the 1 level 2 

collection of the satellite 

program 

Level 1C 

Source: USGS Science for a changing world (USGS, n.d.) 

All Sentinel-2 bands were weather-corrected in QGIS 3.16.8 software using the Semi-

Automatic Classification Plugin of  Congedo (2016) and used in the investigations of  

(Al-Masaodi & Al-Zubaidi, 2021; Belenok et al., 2021; Islam et al., 2021; Moraes Rocha 

et al., 2022). The atmospheric correction was applied because it allowed the conversion 

of the Sentinel-2 image from level 1C to level 2A (Bottom of Atmosphere), in order to 

obtain more accurate results in the eventual supervised classification (Sola et al., 2018).  
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2.3 Additional cropping of the study area 

The polygon of the study area was cropped because the Landsat-8 and Sentinel-2 imagery 

did not cover the entire area. The area dispensed was 12.3876 km2 (0.52% of the study 

area) (see Figure 2). After clipping, spectral indices were calculated (see 2.4). 

 

Figure 2. Crop of the additional study area by partial coverage of the satellite images. 

2.4 Calculation of spectral indices 

NDVI, GNDVI, MSI and GCI spectral indices were calculated in ENVI 5.3 software. The 

calculation of spectral indices and their stack (union of calculated indices) were essential 

for supervised classification. The equations for calculating the spectral indices are shown 

in Table 2.  

Table 2. Equations for the calculation of spectral indices 

Equations for Calculating Spectral Indices 

   

Source: (Tian et al., 2021; EOS, 2019; Welikhe et al., 2017; Sarker et al., 2021) 

2.5 Creation of Regions of Interest (ROIs)  

Initially, areas with banana, cocoa and palm crops, bodies of water, human settlements, 

without apparent vegetation and with other covers were identified. For identification, 

coordinates were taken in the aforementioned areas using Google Earth Pro; However, for 

cocoa cultivation, insitu coordinates were taken due to the complexity of identifying this 

coverage from software. Finally, the regions of interest were created in the ENVI 5.3 

software (see Table 3); In addition, spectral separability values were calculated by 

applying the methodology described by (Howell & Yackel, 2014) ; This calculation made 

it possible to verify the quality of the ROIs created (which influence the results of the 

ranking).  
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Table 3. Number of pixels allocated per category in ROIs. 

Category Assigned 

Color 

Number of pixels per category  

Landsat-8  Sentinel-2 

Areas with banana cultivation  387 1099 

Areas with cocoa crops  200 481 

Areas with palm plantations  219 1384 

Areas with bodies of water  247 1344 

Areas with no apparent vegetation  963 1910 

Areas with human settlements  716 1263 

Areas with other coverages  609 10869 

Clouds  1481 Not Considered 

2.6 Supervised classification 

Supervised classification with ML (conventional method in remote sensing) was 

performed in ENVI 5.3; It uses quadratic or linear discrimination functions and the 

classes (ROIs) are assigned according to the maximum probability of the pixel according 

to the regions of interest created (Ha et al., 2020). On the other hand, QGIS was used for 

the classification with Random Forest, and the Dzetsaka plugins created by Karasiak 

(2019) and used in the (Ju & Bohrer, 2022; Palafox-Juárez et al., 2021; Santarsiero et al., 

2022; Sejati et al., 2020). 

2.7 Validation of results 

To check the results, random coordinates were taken in Google Earth from all categories, 

except for "Areas with cocoa crops" (again insitu coordinates were taken). With these 

new coordinates, other ROIs were created on the calculated index stacks (see 2.4) 

Next, a confusion matrix was made, which is a double-entry table, where each category 

represents a row and a column within the table. The double entry allows you to compare 

the actual values with the results of the post-classification with different ROIs and raise; 

Therefore, the diagonal of the matrix indicates the pixels that match, while the other 

values (vertical) indicate the pixels that were confused with other categories 

(classification error) (Borràs et al., 2017). 

The Confusion Matrix of (John, 1986), is a fairly common methodology in remote 

sensing and has been cited in different studies around the world, including those of 

(Borràs et al., 2017; Pinto-Hidalgo & Silva-Centeno, 2022; Rouibah & Belabbas, 2020; 

Valbuena et al., 2016).  

In the same way, the Kappa coefficient proposed by Cohen (1960) and used in the 

investigations of (Borràs et al., 2017; Rouibah & Belabbas, 2020; Valbuena et al., 2016). 

The result of the calculation (performed in ENVI 5.3) indicates the level of accuracy or 

adjustment of the classification. Between 0.01 and 0.20 represents a slight agreement, 

between 0.21 and 0.40 represents an acceptable agreement, between 0.41 and 0.60 a 

moderate agreement, between 0.61 and 0.80 a considerable agreement, and between 0.81 

and 1 a near perfect agreement (Cohen, 1960). 
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3. Results 

3.1 Calculation of spectral indices 

The NDVI of Sentinel-2 (E) obtained a greater presence of dense vegetation compared to 

the NDVI of Landsat-8 (A). Similarly, the values of GNDVI (photosynthetic activity) and 

GCI (chlorophyll content) of Sentinel-2 (F and H) were higher than those reported by the 

same indices for Landsat-8 (B and D). In contrast, the Landsat-8 (C) MSI (water stress) 

index had higher values than those reported by Sentinel-2 (G). These obvious differences 

are due to the seasonal differences between the two images; the Landsat-8 image 

corresponds to the dry season, while the Sentinel-2 image belongs to the rainy season. 

Therefore, it is evident that in the Sentinel-2 image there will be more dense vegetation, 

which results in higher photosynthetic activity and chlorophyll levels in the leaves, as 

well as less water stress (see Figure 3).  

 

Figure 3. Landsat-8 and Sentinel-2 spectral indices representation: A(NDVI Landsat-8) – 

B(GNDVI Landsat-8) – C(MSI Landsat-8) – D(GCI Landsat-8) – E(NDVI Sentinel-2) – 

F(GNDVI Sentinel-2) – G(MSI Sentinel-2) – H(GCI Sentinel-2). 

3.2 Spectral separability 

The spectral separability of the ROIs of the Sentinel-2 (B) index stack was better than the 

spectral separability obtained for Landsat-8 (A); the improvement of Sentinel-2 is due to 

better spatial resolution in its bands. The spectral separability values between the 

categories "Areas with cocoa crops" and "Areas with other covers" were the lowest for 

both Landsat-8 (1.47) and Sentinel-2 (1.90). The low spectral separability mentioned is 

due to the fact that it was not possible to identify large areas of unique areas with cocoa 

crops (it is common for it not to be planted in large areas or always together with other 

types of crops), making it difficult to create good ROIs for this category, especially in 

Landsat-8 (lower spatial resolution). However, for Landsat-8, 26 of the 28 spectral 

separability values calculated ranged from 1.86 to 2 (very high separability); In the same 

vein, for the Sentinel-2 Stack, 20 of the 21 calculated values fluctuated between 1.94 and 

2 (see Figure 4). 
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Figure 4. Jeffries-Matusita spectral separability of calculated index stack ROIs: A: 

Landsat-8 and B: Sentinel-2 

3.2 Supervised classification 

3.2.1 Landsat-8 classification 

2609249Pixels with spatial resolution of 30 m x 30 m were identified in both the Landsat-

8 classification with ML (A) and RF (B). Both ML (1512.96 km2) and RF (1242.09 km2) 

detected that the category "Zones with other coverage" predominates in the occupation of 

land use in the study area. Similarly, in both classifications, the category with the lowest 

territorial occupation was "Areas with bodies of water", with 21.21 km2 using ML and 

14.91 km2 using RF. In relation to the detection objectives (areas with banana, cocoa and 

palm crops), in both classifications cocoa cultivation had the largest territorial extension 

(208.71 km2 with ML and 222.68 km2 with RF), followed by banana cultivation (74.83 

km2 with ML and 118.52 km2 with RF) and palm cultivation (24.19 km2 with  ML and 15.30 

km2 with RF) (see Figure 5).   

 

Figure 5. Supervised Landsat-8 classification. A: ML-L8 and B: RF-L8 
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3.2.1 Sentinel-2 classification 

23483177Pixels  with spatial resolution of 10 m  x 10 m were identified in both the 

Sentinel-2 classification with ML (A) and RF (B). As in the Landsat-8 classifications, for 

Sentinel-2, both with ML (1091.29 km2) and RF (1631.51 km2), it was detected that the 

category "Areas with other coverages" predominates in the land use occupation of the 

area. However, ML detected that the category with the smallest area was "Areas with 

palm plantations" with 31.23 km2, while RF "Areas with banana crops" with 26.55 km2; 

all totally different from what was detected by the same classifiers for Landsat-8. In 

addition, it should be noted that ML detected 500.30 km2 of cocoa and 34.97 km2 of 
bananas; in the same sense, RF detected 26.68 km2 of palm and 130.96km2 of cocoa (see Figure 6).   

 

 

Figure 6. Supervised classification of Sentinel-2. A: ML-S2 and B: RF-S2 

3.3 Validation of results 

3.3.1 Confusion matrices 

The most accurate classification was Sentinel-2 with Random Forest (89%) and the least 

accurate was Sentinel-2 with Maximum Likelihood (76%). In the rankings, the 

percentages of agreement/accuracy for areas with banana, cocoa and palm crops ranged 

from 33.85% (the lowest percentage) to 98.63% (the highest percentage) (see Figure 7).   

According to Figure 7, cocoa could not be accurately detected with any classifier (ML-

L8: 50%, RF-L8: 41.67%, RF-S2: 33.85% and ML-S2: 54.36%). On the other hand, areas 

with palm (values above 96.17% with ML-L8, ML-S2 and RF-L8) and banana (values 

above 96.58% with ML-L8 and RF-L8) could be detected with a fair degree of accuracy. 

The classification with the best detection accuracy for bananas, cocoa, and palm was ML-

L8 (98.63%, 50%, and 96.30%, respectively) and the lowest accurate was RF-S2 

(agreement/accuracy values below 72.84%) (see Figure 7).   
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Figure 7. Confusion matrices: A: ML-L8, B: ML-S2, C: RF-L8 and D: RF-S2.  

3.3.2 Kappa coefficients 

According to the Kappa coefficient, all the rankings were considerable.  The most 

accurate was Landsat-8 with Random Forest (0.80) and the least accurate was Sentinel-2 

with Maximum Likelihood (0.61) (same as in Figure 7).  The most accurate 

classifications were obtained with Landsat-8; however, Random Forest with Sentinel-2 

obtained a fairly close accuracy (0.78) (see Table 4).  

Table 4. Kappa coefficients for classifications made with Maximum Likelihood and 

Random Forest.   

Classification Kappa coefficient Precision 

Maximum Likelihood – Landsat-8 0.79 Considerable 

Maximum Likelihood – Sentinel-2 0.61 Considerable 

Random Forest – Landsat-8 0.80 Considerable 

Random Forest – Sentinel-2 0.78 Considerable 

 

4. Discussion 

The Maximum Likelihood method has been one of the most widely used for decades for 

the classification of multispectral images; however, new AI-based methods such as 

Random Forest have emerged (Cánovas-García et al., 2016; Mather & Tso, 2016). This 

includes the need to check the accuracy of these new classification methods. In addition, 

in the province of Los Ríos, where agricultural production is transcendental in 

socioeconomic conditions (Ministry of Agriculture, Livestock, Aquaculture and Fisheries, 

2016), up-to-date mapping of the distribution of the most important crops is essential 

(Borràs et al., 2017), as the maps offered by public government entities are often outdated 

and it is common for agricultural areas to be lumped into macro categories.  

For the detection of different crops, it is common to use spectral indices of vegetation as 

it increases the chances of obtaining an accurate classification  (Denis Ávila et al., 2020; 

Fei et al., 2011) . Different vegetation indices have been tested in several studies, such as 
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NDVI and the Soil-Adjusted Vegetation Index (SAVI), among others (Munyati, 2022). 

Precisely, NDVI is one of the most widely used indices; For example, it has been used for 

the estimation of the mangrove leaf area index (Guo et al., 2021), to determine the 

ecological dynamics of forest vegetation (Prăvălie et al., 2022), among many other 

studies around the world. In this study, NDVI, GNDVI, GCI and MSI were used to form 

a stack of indexes for each image and on these to create the ROIs and generate the 

rankings.  

Although, with other vegetation indices and other types of pre-processing, Maximum 

Likelihood and Random Forest have also obtained accurate results (Ali et al., 2018; 

Axelsson et al., 2021; Ge et al., 2020; Shivakumar & Rajashekararadhya, 2018), the 

classifications made in this research, obtained considerable accuracy according to the 

Kappa coefficient, with overall accuracy percentages between 82% and 89% (according 

to the confounding matrix). It should be noted that, with better and more training data, the 

accuracies could have ranged between 95% and 99%  (Borràs et al., 2017; Sharma et al., 

2017).  

While the overall accuracy of the classifications fluctuates between 82% and 89%, the 

detection accuracy for two (banana and palm) of the three main detection targets was 

excellent (above 96%). In contrast, cocoa was not accurately detected in any 

classification (agreement/accuracy values below 55%). This was due to the low spectral 

separability of areas with cocoa crops with the category "Zones with other covers". This 

occurred because no extensive coverage of cocoa crops was identified in the area, since it 

is generally not planted in large areas or is planted next to others. Consequently, it is 

possible to affirm according to (E. D. Chaves et al., 2020; Weiss et al., 2020) that the 

detection of this crop was not accurate, since the lack of field samples to train the 

classifiers was the great limitation.  

Generally, Maximum Likelihood detects areas with agricultural crops very accurately in 

Landsat-8 and Sentinel-2 imagery, as does Random Forest (Ali et al., 2018; Borràs et al., 

2017; Campos-Taberner et al., 2020; Ge et al., 2020; Pareeth et al., 2019; Santiago Bazán 

et al., 2021; Song et al., 2021). In this case, the best classification for the detection of 

bananas, cocoa and palm (together) was that of Landsat-8 using Maximum Likelihood, 

while the least accurate was that of Sentinel-2 using Random Forest; however, RF-S2 in 

overall accuracy (encompassing water, urban use, without vegetation and other coverage) 

was the most accurate. The low accuracy of RF-S2 for the detection of these three 

cultures is due to two main reasons. The first reason was due to the season of the 

Sentinel-2 image (rainy season), which has a significant influence on the (Gomariz-

Castillo et al., 2017; Rodríguez-Valero & Alonso-Sarria, 2019) . The second reason was 

due to the lack of field data for cocoa crops (as previously mentioned) (E. D. Chaves et 

al., 2020; Weiss et al., 2020). 

  

5. Conclusion 

The results allow us to conclude that Random Forest was the method with the highest 

overall accuracy, although the difference using Maximum Likelihood was not significant. 

However, for the detection of bananas, cocoa and palm, the best method was Maximum 

Likelihood with Landsat-8 imagery (lower spatial resolution). It is suggested that, in 

future comparative studies, a greater number of insitu coordinates be taken for cocoa 

cultivation; In addition, to use Sentinel-2 images in the dry season, because it is presumed 

that the low accuracy (especially with RF-S2) in the detection of the target crops was due 

to the season of image acquisition (rainy season).  
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