Migration Letters

Volume: 20, No: S9(2023), pp. 629-652 ISSN: 1741-8984 (Print) ISSN: 1741-8992 (Online) www.migrationletters.com

Elasticity of Demand for Avocado to the European Market and the United States, Years 2010 – 2020

Alberto Valenzuela Muñoz¹, Carlos Bernardino Ruiz Huaraz², Ángel Antonio Panaspaico Medina³, Rodolfo Jorge Aragon Rosadio⁴, Dario Emiliano Medina Castro⁵, Tomas Cotrina Trigozo⁶

Abstract

The analysis was carried out for the period from 2010 to 2020, where the production and export volumes of avocado to European and North American countries are shown. The objective of this study is to determine the elasticity of demand for avocado in these countries. "Since Alfred Marshall included it in his work Principles of Economics.

An analysis is made of the statistical series of each variable, its historical evolution, as well as its individual trends.

Based on the following econometric model:

 $Qd(t) = \beta o + \beta I(P)t + \beta 2(Yp)t + \beta 3(TC)t + \beta 4(N) + u$

Eviews 9.0 software was used, applying a log-log econometric model where the data series are given in years.

To measure the elasticity of demand for avocado, the indicators used were consumption, population, per capita income in dollars, and the international price of avocado in dollars.

In the Netherlands, the demand for Peruvian avocado shows the following behavior:

a. A 1% increase in price causes a reduction in demand of 0.16 %.

b. An increase in per capita income of 1% causes the demand for avocado to increase by 2.7%.

c. A 1% increase in population causes the demand of avocado to increase by 8.23 %.

In Spain, the demand for Peruvian avocados shows the following behavior:

a. A 1% increase in price generates a reduction in demand of 0.09 %.

b. If per capita income increases by 1%, the demand for avocado increases by 0.13
%.

c. A 1% increase in population generates that the demand for avocado increases by 3.49%.

In the U.S., demand for Peruvian avocados shows the following behavior:

a. A 1% increase in price generates a reduction in demand of 1.25%.

b. If per capita income increases by 1%, the demand for avocado increases by 16.99%.

c. A 1% increase in population causes the demand for avocado to decrease by 1.38%.

³ apanaspaico@unjfsc.edu.pe; ORCID: https://orcid.org/0000-0002-9005-3864

avalenzuela@unjfsc.edu.pe ORCID: https://orcid.org/0000-0002-2272-5307

² cruiz@unjfsc.edu.pe. ORCID: https://orcid.org/0000-0002-4748-9160

 ⁴ raragon@unjfsc.edu.pe; ORCID: https://orcid.org/000-002-2483-008X
 ⁵ dmedinac@unitru.edu.pe: ORCID: https://orcid.org/0000-0003-1748-7313

⁶ cotrinat16@ucvvirtual.edu.pe : ORCID: https://orcid.org/0000-0001-5959-5772

In ENGLAND, the demand for Peruvian avocado shows the following behavior:

d. A 1% increase in price generates a reduction in demand of 0.03 %.

e. If per capita income increases by 1%, the demand for avocado decreases by 0.47%.

f. A 1% increase in population generates that the demand for avocado increases by 3.62%.

INTRODUCTION

٠

In the last decade, Peru has seen an increase in avocado production, which has led to a surplus of avocado production being exported to European and North American markets, which has been reflected in the behavior of the increase in demand. Thus, for Baroke and Hancock, countries such as "Peru, Mexico, Chile, Dominican Republic, are exporting avocado to the United States, Holland, Spain, England, and China, as a result of this offer, countries are expanding their cultivated areas" (2016, p. 3.). We should also highlight "that the production of Peruvian avocado has grown at an average annual rate of 10.5% in the period 2001-2018, being the region of La Libertad with a growth of 41% of the total produced the one that leads this growth". (ADEX, 2019, p. 09).

The analysis carried out dates from 2010 to 2020, where the production and export volumes of avocados to European and North American countries are exposed. The objective of this study is to determine the elasticity of demand for avocados in these countries.

THEORETICAL FRAMEWORK

The Demand

The demand for a "good is a function of the price of the item, the buyer's income, the prices of substitute and complementary goods, and his tastes" (Salvatore, 1977, p.09). It is then detailed in the following equation, according to Salvatore:

Qdx=f(Px,I,Pob,G,Ps,Pc)

Qdx = Quantity demand of good x

Px = Price of good x

I = Monetary income

P = Population

G = Taste

Ps = Price of substitute products

Pc = Price of complementary products" (1977, p. 09).

According to this demand function, only the relationship of the demand with these factors is shown, now it is necessary to see its variations with the changes of the factors, for this, the elasticity coefficient is used.

ELASTICITY

Alfred Marshall defined elasticity, it is true that before Marshall "the idea of elasticity already existed in its purest meaning, as the proportional change of a variable concerning the change of another related variable" (Miguel Cervantes Jiménez and Abraham Aparicio Cabrera 1993, p. 10). Elasticity is currently used as an instrument of analysis in economics. "Since Alfred Marshall included it in his work Principles of Economics (1890), and since that time it has been used as a means of quantifying the

variations experienced by one variable in the face of changes in another" (Veres Ferrer and José M. Pavía 2012, p.02). The measurement of foreign trade elasticities was promoted by the International Monetary Fund "through the Staff Papers, as expressed by Blejer, Khan and Masson (1995). This generated a wide literature on elasticity, expressed in equations, as well as excerpts of the contributions expressed in compilations" (Maximiliano Albornoz, 2018, p.02).

In the academic literature, there is work on "trade elasticity, framed in developed economies, on foreign trade elasticity (Fullerton, Sawyer, Sprinkle 1999). There is research on elasticity for some countries in the region, but there are no studies that include a larger number of countries" (Fullerton, Sawyer, Sprinkle 1999) (Maximiliano Albornoz, 2018, p. 3).

The coefficient of price elasticity of demand, as indicated by Salvatore, is detailed below:

Price elasticity of demand "is that which calculates the percentage change in the quantity demanded of an item per unit of time, in the face of a percentage change in the price of the same item" (1977, p. 36).

 $e = (\Delta Q/Q)/(\underline{\wedge}P/P) = (\underline{\wedge}Q)/(\underline{\wedge}P)*P/Q$

e = Price elasticity of demand

 ΔQ = Increase in the quantity demanded

 \underline{AP} = Increase in the price of the good

Q = Quantity demanded

P = Price of the asset.

The price elasticity of demand according to Salvatore is: "a) Unitary, i.e. it is equal to 1, b) Inelastic, its value is less than 1, the quantities demanded react little to changes in the prices of the merchandise, c) Elastic, it is greater than 1" (1977, p. 36).

MATERIALS AND METHODS

The research used data published by the Central Reserve Bank of Peru on its website. These data are expressed in millions of U.S. dollars (US \$), also with data collected from the Ministry of Agriculture and Irrigation, Sierra y selva exportadora, and ADEX, among others.

Exports (X) were disaggregated for the following countries. England, Holland, Spain, and the United States.

The statistical series for each variable are analyzed along; with their historical evolution, as well as their trends.

Based on the following econometric model:

 $Qd(t) = \beta o + \beta 1(P)t + \beta 2(Yp)t + \beta 3(TC)t + \beta 4(N) + u$

Eviews 9.0 software was used, applying a log-log econometric model where the data series are given in years.

To measure the elasticity of demand for avocados, the indicators used were consumption, population, the exchange rate in soles/dollars, per capita income in dollars, the international price of avocados in dollars, and the international price of avocados in dollars.

Following the proposed objective, we first described the evolution of each of the indicators proposed for each of the variables and then proceeded to develop the proposed econometric model.

RESULTS

WORLD AVOCADO PRODUCTION

•

Total production, tons (ton), and total planted area, hectares (ha.) are the indicators to be reviewed, taking into consideration the number of producing countries, as well as their degree of importance in world avocado production.

From 2010 to 2022, 17 countries were incorporated into avocado planting and production, which started in 1961 with 48 and by the end of 2019 had reached 65, an increase of 35% (see Table 1).

The demand for a good is a function of the price of the item, the buyer's income, the prices of substitute and complementary goods, and the buyer's tastes (Salvatore, 1977).

To carry out the research, actual data published by the Ministry of Agriculture and Irrigation on its web page was collected on the research variables, considering the period 2010 - 2021.

Total production, tons (ton.), and total planted area, hectares (ha.) are the indicators to be reviewed, taking into consideration the number of producing countries, as well as their degree of importance in world avocado production.

Voor	2015	2016	2017	2018	2010	2015
Ital	2013	2010	2017	2018	2019	- 2019
Total Productior	5,402	5,799	6,131	6,536	6,984	30,852
Mexico	1,644	1,889	2,030	2,185	2,379	10,127
Dominican Rep.	526	601	638	644	727	3,136
Peru	367	455	467	505	536	2,330
Indonesia	383	343	363	410	437	1,936
Colombia	310	294	308	327	352	1,591
Brazil	181	197	213	236	261	1,088
Kenia	136	176	218	234	231	995
United States	208	125	170	169	153	825
Venezuela	129	130	133	140	144	676
Israel	93	102	110	132	137	574
Guatemala	115	122	127	125	134	623
China	118	125	126	129	133	631
South Africa	86	90	63	128	130	497
Chile	147	139	132	125	123	666
Spain	87	92	93	90	97	459
Malawi	95	87	97	92	93	464
Haiti	89	91	92	91	89	452
Cameron	72	73	74/	75	75	369
Australia	49	68	57	63	72	309
Rep. del Congo	66	66	66	66	66	330
Other countries	502	234	554	573	617	2.480

Table 1: Main avocado-producing countries, by Volume, in thousands of MT.

Source: FAOSTAT - Elaboration: UIC-SSE

The production volume of avocado and/or avocado in thousands of MT in the period (2015-2019) of the main countries of the world amounted to 30,852 MT, being the top 3 countries in production, Mexico with 10,127 MT representing 32.82% of total production, Dominican Republic with 3,136 MT, representing 10.16% of total production, Peru with 2,330 MT, representing 7.55 % of total production.

Table 2: Evolution of World Avocado Production (thousands of tons)

Years	Production	
2010	3,974	
2011	4,266	
2012	4,514	
2013	4,745	
2014	5,160	
2015	5,402	
2016	5,799	
2017	6,131	
2018	6,536	
2019	6,984	
2020	8,059	
2021	8,100	

Source: FAOSTAT

Figure 1. World Avocado Production (thousands of tons)

World avocado production in the period (2010-2021) increased on average between 1.05 and 1.07 % annually, except for the years 2019 and 2020, which amounted to 1.15%, demonstrating that avocado consumption worldwide is favorable for the producing countries in the sense that it generates profits and improves employment in the producing countries.

WORLD AVOCADO EXPORTS

	2015	2016	2017	2018	2019	2015 –19
Total	2220	1277	5976	5017	6400	25974
Export	3330	4377	3620	3042	0499	23874
Mexico	1662	2051	2828	2562	2790	11893
Netherlands	426	645	797	888	1033	3789
Peru	304	397	581	722	751	2755

Spain	223	275	350	354	392	1594
Chile	162	297	391	274	301	1425
Colombia	10	35	53	63	175	336
EE.UU.	99	129	152	180	154	714
Kenia	53	53	64	78	118	366
France	47	58	71	62	92	330
Dominican	17	22	40	51	07	227
Rep.	17	33	49	51	87	237
Israel	53	42	45	48	70	258
South Africa	71	72	64	116	71	394
Belgium	29	42	45	48	70	234
New Zealand	63	88	87	71	70	379
Morocco	17	17	46	56	51	187
Other	04	122	170	214	251	061
countries	94	132	170	214	231	801

٠

The volume of avocado and/or avocado exports in thousands of T.M in the period (2015-2019) from the main countries of the world amounted to 25,874 T.M, flourishing the top 3 countries in exports, Mexico with 11, 893 T.M representing 10.78 % of total exports, the Netherlands with 3,789 T.M, representing 3.99 % of total exports, Peru with 2,755 T.M, representing 2.90 % of total exports.

Figure 2. World avocado exports by country, in billions of US\$ (total years 2015 to 2019)

AVOCADO PRODUCTION IN PERU

Table 4: Peruvian avocado production by department, 2011-2021 (in TM)

Department	2,011	2,013	2,014	2,015	2,016	2,017	2,018	2,019	2,020	2,021	2011-2021	T.C
Total	212,830	288,387	335,511	376,602	455,394	466,817	486,954	571,992	672,232	778,791	4,645,510	
Amazon	1,250	1,163	1,319	926	1,051	1,155	1,160	1,400	1,172	1,076	11,672	0.25
Ancash	6,813	26,218	27,927	26,116	20,456	11,473	17,547	20,180	33,363	37,129	227,222	4.89
Apurímac	1,847	2,445	3,072	3,727	3,795	3,945	4,403	4,416	4,957	10,160	42,767	0.92
Arequipa	7,920	9,943	13,585	12,067	12,579	15,862	20,085	22,731	27,528	24,397	166,697	3.59
Ayacucho	4,638	5,291	5,247	5,311	5,219	7,772	6,615	16,640	29,498	30,771	117,002	2.52
Cajamarca	4,769	4,462	5,219	4,745	4,510	5,699	5,003	3,676	4,981	4,921	47,985	1.03
Cusco	4,703	5,694	5,541	6,170	7,861	4,868	4,868	6,475	7,537	8,504	62,221	1.34
Huancavelica	765	671	661	642	729	811	811	2,425	11,883	15,566	34,964	0.75
Huánuco	2,470	2,446	2,454	2,741	2,833	3,297	3,297	3,547	3,698	3,983	30,766	0.66
Ica	30,829	39,439	45,047	56,638	57,049	53,924	53,924	71,591	80,560	81,700	570,701	12.29
Junín	30,540	34,505	32,977	31,917	34,128	36,607	36,607	44,808	45,122	52,100	379,311	8.17
La Libertad	52,409	74,698	97,470	112,775	178,272	197,271	204,526	202,727	215,319	226,700	1,562,167	33.63
Lambayeque	916	1,830	5,392	7,679	8,279	9,924	15,559	62,174	86,008	124,429	322,190	6.94
Lima	46,942	61,249	67,714	81,310	92,070	86,304	83,607	80,192	90,254	124,189	813,831	17.52
Lima Metropolit	ana			1,634	1,820	1,739	1,504	1,499	1,297	1,394	10,887	0.23
Loreto	2,025	3,330	3,211	3,289	3,453	3,513	3,530	3,555	3,565	3,581	33,052	0.71
Madre de Dios	325	447	473	424	491	423	508	608	611	634	4,944	0.11
Moquegua	2,769	5,551	6,058	6,393	6,156	5,061	6,778	7,556	7,748	8,315	62,385	1.34
Pasco	2,582	1,841	1,977	2,212	2,384	3,066	2,601	2,942	4,493	6,187	30,285	0.65
Piura	3,264	1,700	4,370	4,267	7,025	8,364	7,930	7,679	6,204	5,973	56,776	1.22
Puno	1,915	2,279	2,393	2,430	2,469	2,463	2,460	2,485	2,516	2,499	23,909	0.51
San Martín	996	699	801	723	301	313	356	416	496	597	5,698	0.12
Tacna	185	202	225	378	377	410	280	212	287	421	2,977	0.06
Tumbes	0	0	0		0	0	0	0	0	0	0	0.00
Ucayali	1,956	2,283	2,378	2,088	2,087	2,553	2,995	2,056	3,136	3,566	25,098	0.54

Source: https://siea.midagri.gob.pe/portal/publicacion/boletines-anuales/4-agricola

Figure 3. Peruvian avocado production (tons)

Veer	Has	Cusuath vote
fear	Harvested	Growin rate
2007	13,522	
2008	14,370	6.3%
2009	16,292	13.4%
2010	17,748	8.9%
2011	19,300	8.7%
2012	21,615	12.0%
2013	27,438	26.9%
2014	30,320	10.5%
2015	33,989	12.1%
2016 P/	37,871	11.4%
2017 P/	39,629	4.6%
2018 P/	40,134	1.3%
2019 P/	46,794	16.6%
2020 P/	51,241	9.5%
2021 P/	55 <i>,</i> 056	7.4%

•

Table 5: Avocado HARVESTED AREA in Peru, 2008-2021 (hectares)

The production of avocado and/or avocado in thousands of T.M in the period (2011-2021) of the main departments of Peru amounted to 4'663,072 T.M, highlighting in first place the department of La Libertad with a production of 1'562,167 T.M., which represents 33.63% of the country's total production, followed by Lima provinces with a production of 813,831 MT, representing 17.52% of the total production, Junín with a production of 379,311 MT, representing 8.17% of the total production, Lambayeque with a production of 322,190 MT, representing 6.94% of the total production and Lambayeque with a production of 322,190 MT, representing 6.94% of the total production.

Figure 4: avocado HARVESTED AREA in Peru, 2008-2021 (hectares/year)

According to data from the Ministry of Agriculture and Irrigation, between 2007 and 2021, Peru experienced an average annual harvest of 31,021 hectares of avocado, increasing from 13,522 hectares in 2007 to 55,056 hectares in 2021. The growth of harvested area of avocado in Peru has had a steady growth during the fifteen years shown in Table 5, with 2013 being the year of highest percentage increase (27%); between the years 2011 and 2017 the period of greatest dynamism in the harvested area is observed, a period in which it went from 19,300 to about 40,000 hectares.

Although in the years after 2018, the dynamism of the increase in harvested hectares has slowed down, it can be seen that there is still an increase that has allowed it to reach over 55 thousand hectares harvested in 2021.

Table 6: PERU: avocado exports, main countries of destination between 2010 and 2021 (in US\$)

		,												
Country	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2011-21	T.C
NETHERLAND S	38,897	74,381	57,849	84,513	96,581	117,599	163,331	206,002	267,613	249,540	254,458	346,810	1,957,574	35.8
U.S.A.	784	23,484	25,880	39,272	120,965	83,134	74,427	175,117	175,641	231,875	157,937	200,007	1,308,523	23.93
SPAIN	27,808	37,828	33,439	38,374	47,689	50,471	78,077	88,964	110,229	114,845	131,351	173,249	932,324	17.05
CHILE	112	1,439	945	481	3,325	13,380	12,480	10,028	35,287	26,944	44,484	121,234	270,139	4.94
UNITED KINGDOM	6,175	10,715	9,165	10,502	18,685	31,914	44,384	58,050	65,421	58,775	63,604	76,137	453,527	8.29
CHINA			40	37		104	4,580	13,442	30,111	25,703	26,237	29,208	129,462	2.37
OTHERS	11,259	13,372	8,202	10,855	12,866	9,667	19,304	28,796	39,808	44,773	81,055	136,618	416,575	7.62
TOTAL	85,035	161,219	135,520	184,034	300,111	306,269	396,583	580,399	724,110	752,455	759,126	1,083,263	5,468,124	

Figure 5. destination of peruvian avocado, years 2010 - 2021

The export of avocado and/or avocado during the period from 2010 to 2021 shows that the countries that have been destinations of our avocado, show the following detail: Netherlands consumes 1,957,574 T.M. which represents 35.50 % of all Avocado sales abroad; USA, is the second of the biggest avocado consumers, with 1,305,523 T.M, which represents 23.93 % of the global consumption of exports, Spain, consumes 932,324 T.M, which represents 17.05 % of the global consumption of exports, United Kingdom consumes 453,527 T.M, which represents 8.29 % of the global consumption of exports.

Table 7: PERUVIAN AVOCADO EXPORTING COMPANIES, IN THE YEARS 2015 TO 2019

	2015	2016	2017	2018	2019	2015-19	T.C
AVOCADO PACKING COMPANY S.A.C.	7,412	9,656	29,656	29,326	30,487	106,537	8.25
SOCIEDAD AGRICOLA DROKASA S.A.	18,896	28,393	22,691	31,116	21,003	122,099	9.46

AGRICOLA CERRO PRIETO S.A.C.	17,070	15,552	11,483	24,363	20,670	89,138	6.91
OL S.A.	22,770	19,940	39,479	44,614	20,486	147,289	11.41
CAMET TRADING S.A.C.	-	11,627	11,819	16,874	16,907	57,227	4.43
CONSORCIO DE PRODUCTORES DE FRUTA S.A.	10,358	9,614	11,131	13,596	15,556	60,255	4.67
VIRU S.A.	3,229	4,379	10,421	15,641	11,103	44,773	3.47
CORPORACION FRUTICOLA DE CHINCHA S.A.C.	7,774	7,061	6,734	9,395	10,800	41,764	3.24
ASK IRADING SOCIEDAD ANONIMA CERRADA	-	827	5,906	10,124	9,159	26,016	2.02
PLANTACIONES DEL SOL S.A.C	-	174	3,212	7,179	8,229	18,794	1.46
INCAVO S.A.C.	2,233	3,337	4,326	7,919	7,511	25,326	1.96
AGRICOLA HOJA REDONDA S.A.	1,934	2,048	1,786	6,154	6,578	18,500	1.43
AGRICOLA LAS MARIAS S.A.C.	3,170	1,722	2,969	6,071	4,614	18,546	1.44
AGRICOLA PAMPA BAJA S.A.C.	749	2,815	1,743	5,394	4,590	15,291	1.18
HASS PERU S.A.	1,874	971	2,888	6,433	4,398	16,564	1.28
AGRICOLA CHAPI S.A.	3,037	2,804	2,829	3,194	4,261	16,125	1.25
PROCESADORA LARAN SAC	3,346	2,925	2,410	3,840	4,057	16,578	1.28
ASICA FARMS S.A.C.	-	1,464	3,788	2,520	3,698	11,470	0.89
AGRICOLA ALPAMAYO S.A. 2,	2,592	48	-	3,074	3,453	9,167	0.71
COMPLEJO AGROINDUSTRIAL BETA S.A.	1,184	1,443	1,457	1,937	3,395	9,416	0.73
OTRAS EMPRESAS	68,054	67,283	70,807	112,600	101,288	420,032	32.54
Total exportado	175,682	194,083	247,535	361,364	312,243	1,290,907	

Source: Veritrade. Elaboration: UIC- SSE

٠

In Peru, an important number of avocado exporting companies exist, of which, as of 2019 20 companies exceeded 3,300 tons of annual exports; in 2015 the total volume of avocado exported by Peruvian companies was 68 thousand tons and in 2018 it reached a total volume of 112 thousand tons, an amount slightly higher (by 10%) than the volume that was reached in 2019.

Figure 6: Main Peruvian avocado exporters, years 2015 to 2019

Among the main exporting Companies of avocado and/or avocado from Peru in the period (2015-2029) highlights the company CAMPOSO S.A with an export production of 147,289 T.M which represents 11.41 % of total exports, the company SOCIEDAD AGRICOLA DROKASA S.A with an export production of 122,099 T.M which represents 9.46 % of total exports, AVOCADO PACKING COMPANY S.A.C., with an export production of 106,537 metric tons, representing 8.25% of the total exports, AGRICOLA CERRO PRIETO S.A.C. with an export production of 89,138 metric tons, representing 6.91% of the total exports, and AGRICOLA CERRO PRIETO S.A.C. with an export production of 89,138 metric tons, representing 6.91% of the total exports.

INTERNATIONAL PRICE OF AVOCADO

Table 8:	international	price	of avocado	(US\$	FOB/Kg)
		1		· · ·	<i>U</i>

Month	2018	2019	2020	2021
January	2.08	1.94	2.3	2.48
February	2.39	1.995	2.36	2.54
March	2.53	2.24	2.26	2.48
April	2.38	2.06	2	2.21
May	1.98	2.19	1.72	1.95
June	1.81	2.58	1.68	1.82
July	1.95	2.68	1.75	1.69
August	1.99	2.73	1.92	1.81
September	1.89	2.79	2.3	2.07
October	1.5	2.11	1.73	1.76
November	2.01	2.32	2.06	1.87
December	1.96	2.3	2.38	1.99
prom. Annual	2.039			
	2	2.3280	2.0383	2.0560

Source: trademark

Figure 7: Monthly avocado prices in the international market, years 2018 to 2021.

According to Trademark data, in the last 4 years the average international price of avocado has slightly exceeded US\$2, with its best performance between June and September 2019, when the price of avocado moved from US\$2.68 to US\$2.79; after this boom in the international price, a significant decrease in its international price has been observed, which has led to prices of this fruit reaching prices similar to those of 2018 in 2021, with a tendency to continue decreasing very slowly.

Regarding the seasonality of prices for the four years with data available, it can be observed that, in general, monthly prices, during the year, show a behavior of higher prices at the beginning of the year and then decrease significantly until the middle and third quarter of the year, to recover from the month of September onwards. The above behavior was counter-seasonal in 2019, due to lower world production levels due to climatic factors and a quite dynamic increase in the consumption of this product in developed countries, mainly. The lower production was also influenced by the high level of increase in fertilizer and energy prices, which had a direct impact on producers' costs.

Estimation with econometric model:

The statistical series for each variable are analyzed; their historical evolution, as well as their trends.

Based on the following econometric model:

 $Qd(t) = \beta o + \beta 1(P)t + \beta 2(Yp)t + \beta 3(TC)t + \beta 4(N) + u$

Eviews 9.0 software was used, applying a log-log econometric model where the data series are given in years.

NETHERLANDS Dependent Variable: TN_HOL Method: Least Squares Date: 06/24/23 Time: 22:18 Sample: 2010 2021 Included observations: 12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
YP_HOL	2.706632	1.209067	2.238613	0.0555
PRECIO	-0.165403	0.175261	-0.943753	0.3729
P_HOL	8.23E-05	9.28E-06	8.860452	0.0000
С	-1287.691	122.0794	-10.54797	0.0000

R-squared Adjusted R-	0.945858	Mean dependent var	84.36800
squared	0.925555	S.D. dependent var	48.71191
S.E. of			
regression	13.29089	Akaike info criterion	8.273237
Sum			
squared			
resid	1413.182	Schwarz criterion	8.434872
Log-			
likelihood	-45.63942	Hannan-Quinn criter.	8.213393
F-statistic	46.58642	Durbin-Watson stat	1.870689
Prob(F-			1.07 0000
statistic)	0.000021		
statistic)	0.000021		

As shown in the table above, it can be stated that the total demand for avocado in the Netherlands is explained by the price of avocado in the country, as well as by the per capita income and population, and this relationship is supported by the following results:

- When the price of avocado increases by 1, on average the demand in the Netherlands decreases by -0.16 percentage points.

- When the per capita income in the Netherlands increases by 1, on average its demand for avocado increases by 2.7 percentage points.

- When the population in the Netherlands increases by 1, on average their demand for avocado increases by 8.23 percentage points.

NORMALITY TEST

The Jarque Bera test is used to test the normality of the model, where with a result of 0.45 and a probability greater than 0.05 (0.79) it is considered that the errors are normally distributed.

AUTOCORRELATION TEST

Auto	correlatio	on	Partia	l Corr	elation		AC	PAC	Q-Stat	Prob
1)		Ϊ T		1	1	0.229	0.229	0.8002	0.371
E.			1.3		1	2	-0.269	-0.339	2.0134	0.365
E.					3	3	-0.289	-0.154	3.5778	0.311
ť.					1	4	0.100	0.160	3.7886	0.435
L.				1	i.	5	0.176	-0.015	4.5320	0.476
E					1	6	-0.084	-0.149	4.7284	0.579
10					3	7	-0.216	-0.067	6.2907	0.506
- ŭ					î.	8	-0.150	-0.128	7.2365	0.511
1	1				1	9	-0.015	-0.120	7.2494	0.611
E.					1	10	0.015	-0.074	7.2682	0.700
E					1	11	0.003	-0.029	7.2696	0.777

The autocorrelation test determined by the Durbin Watson statistic, which for the model the result is 1.8706, in that sense, at a significance level of 95% we have that dL and dU

is equivalent to 0.658 and 1.864 respectively; from these values, it is determined that the autocorrelation falls in the non-autocorrelation zone.

HETEROSCEDASTICITY TEST Heteroskedasticity Test: White

٠

F-statistic	6.402772	Prob. F (9,2)	0.1423
squared	11.59748	Prob. Chi-Square (9)	0.2370
explained SS	2.699094	Prob. Chi-Square (9)	0.9750

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/24/23 Time: 23:27 Sample: 2010 2021 Included observations: 12

statistic)

0.142328

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-68917.15	26454.59	-2.605111	0.1211
YP HOL^2	-0.410349	2.789249	-0.147118	0.8965
YP HOL*PRE				
	0.493520	0.320547	1.539620	0.2635
YP HOL*P H				
OL –	-5.16E-05	3.51E-05	-1.470486	0.2792
YP HOL	768.9419	336.4673	2.285339	0.1496
PRECIO^2	-0.240866	0.066970	-3.596622	0.0694
PRECIO*P H				
OL	2.12E-05	4.89E-06	4.340922	0.0492
PRECIO	-258.2314	53.45386	-4.830920	0.0403
P HOL ²	-3.43E-10	9.30E-11	-3.686310	0.0663
_ P_HOL	0.009329	0.003166	2.946219	0.0985
		Mean	dependent	
R-squared	0.966457v	ar	•	117.7652
Adjusted R-				
squared	0.815513	S.D. deper	ndent var	125.8765
S.E. of		•		
regression	54.06634	Akaike inf	o criterion	10.69321
Sum squared				
resid	5846.338	Schwarz c	riterion	11.09730
Log-				
likelihood	-54.15925	Hannan-O	uinn criter.	10.54360
F-statistic	6.402772	Durbin-W	atson stat	2.157797
Prob(F-				

Positiv e Autoco rrelati on	Zone of Indecisio n	No Autocorrelation			Zone of Indecisio n	Negative Autocorrel ation			
Reje	ect Ho	Accept Ho		Reject Ho					
0	dl	du	2	4- du	4-dl	4			
	0.658	1.864		2.1 36	3.342				
	1.8706								

Results greater than 0.05 show that the homoscedasticity assumption is met, with no heteroscedasticity problem of any order in the model.

As shown in Table *, it could be stated that the total demand for avocados in Spain is explained by the price of avocado in the country, as well as by the per capita income and its population, such relationship is subject to the following results:

• When the price of avocado increases by 1, on average the demand in Spain decreases by -0.09 percentage points.

• When the per capita income in Spain increases by 1, on average its demand for avocado increases by 0.13 percentage points.

• When the population in Spain increases by 1, on average its demand for avocado increases by 3.49 percentage points.

NORMALITY TEST

.

The Jarque Bera test is used to test the normality of the model, where with a result of 0.74 and a probability greater than 0.05 (0.68) it is considered that the errors are normally distributed.

AUTOCORRELATION TEST

Autoco	rrelation	Partial Correl	ation	AC	PAC	Q-Stat	Prob	
			1 1 2 3 4 5 1 6 1 7 1 8 1 9 1 10 1 11	-0.116 2 -0.107 3 0.058 4 -0.052 5 -0.109 5 -0.094 7 0.299 8 -0.256 9 -0.153 9 0.033 -0.004	-0.116 -0.122 0.031 -0.056 -0.116 -0.142 0.262 -0.239 -0.170 -0.108 -0.005	0.2042 0.3949 0.4579 0.5155 0.8020 1.0470 4.0475 6.8006 8.1088 8.2028 8.2058	0.651 0.821 0.928 0.972 0.984 0.774 0.558 0.523 0.609 0.695	
Positiv e Autoco rrelati on	Zone of Indecisi n	f o No A	utocor	relatio)n	Zone o Indecis n	l of sio A 1	Negati ve Autoco relati on
Reje	ect Ho		Accept	Ho		Re	ject H	Io
0	dl	Du	2	4-dı	u	4-dl		4
	0.658	1.864		2.13	6	3.342	2	
			1.8267	12				

The autocorrelation test determined by the Durbin Watson statistic, which for the model the result is 1.8267, in that sense, at a significance level of 95% we have that dL and dU are equivalent to 0.658 and 1.864 respectively; from these values, it is determined that the autocorrelation falls in the autocorrelation zone.

HETEROSCEDASTICITY TEST Heteroskedasticity Test: White

F-statistic	0.894206	Prob. F(9,2)	0.6317					
squared	9.611430	Prob. Chi-Square(9)	0.3828					
explained SS	2.549840	Prob. Chi-Square(9)	0.9795					
Test Equation:								
Dependent Variable: RESID^2								
Method: Least	Method: Least Squares							
Date: 06/25/2	3 Time: 00:	04						

Sample: 2010 2021

Included observations: 12

Variable Coefficient Std. Error t-Statistic Prob.

645 Elasticity of Demand for Avocado to the European Market and the United States, Years 2010 – 2020

С	70384.49	174092.6	0.404293	0.7251
YP_ESP^2	-11.87994	10.14458	-1.171063	0.3622
YP_ESP*P_E	S			
P	-1.00E-05	1.96E-05	-0.511059	0.6601
YP_ESP*PRI	E			
CIO	0.369081	0.619038	0.596218	0.6115
YP_ESP	975.9213	1056.429	0.923793	0.4531
P_ESP^2	3.55E-11	1.22E-10	0.290494	0.7988
P_ESP*PREC				
0	5.69E-06	3.48E-06	1.637921	0.2431
P_ESP	-0.003504	0.009367 -0.374127		0.7443
PRECIO ²	-0.084662	0.065684	-1.288926	0.3264
PRECIO	-188 3885	105.4244 -1.786953		0 2159
TINECIO	100.0000	2001.211	1.700555	0.2100
	100.5005	1001.111	1.700555	0.2100
R-squared	0.800952	Mean depei	ndent var	39.71436
R-squared Adjusted F	0.800952	Mean deper	ndent var	39.71436
R-squared Adjusted F squared	0.800952	Mean depen	ndent var	39.71436 45.32215
R-squared Adjusted F squared S.E. C	0.800952 -0.094761 of	Mean depen	ndent var ent var	39.71436 45.32215
R-squared Adjusted F squared S.E. c regression	0.800952 -0.094761 of 47.42095	Mean depen S.D. depend Akaike info	ndent var ent var	39.71436 45.32215 10.43091
R-squared Adjusted F squared S.E. c regression Sum square	0.800952 -0.094761 of 47.42095 d	Mean depen S.D. depend Akaike info	ent var criterion	39.71436 45.32215 10.43091
R-squared Adjusted F squared S.E. c regression Sum square resid	0.800952 -0.094761 of 47.42095 d 4497.492	Mean depen S.D. depend Akaike info o Schwarz crit	ent var criterion erion	39.71436 45.32215 10.43091 10.83500
R-squared Adjusted F squared S.E. coregression Sum square resid Log	0.800952 -0.094761 of 47.42095 d 4497.492	Mean depen S.D. depend Akaike info o Schwarz crit	ent var criterion erion	39.71436 45.32215 10.43091 10.83500
R-squared Adjusted F squared S.E. coregression Sum square resid Log likelihood	0.800952 -0.094761 of 47.42095 d 4497.492 -52.58547	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui	ent var ent var criterion erion nn criter.	39.71436 45.32215 10.43091 10.83500 10.28130
R-squared Adjusted F squared S.E. coregression Sum square resid Log likelihood F-statistic	0.800952 -0.094761 of 47.42095 d 4497.492 -52.58547 0.894206	Mean depen S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wat	ent var ent var criterion erion nn criter. son stat	39.71436 45.32215 10.43091 10.83500 10.28130 2.064093
R-squared Adjusted F squared S.E. co regression Sum square resid Log likelihood F-statistic Prob(F-	0.800952 -0.094761 47.42095 d 4497.492 -52.58547 0.894206	Mean depen S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wat	ent var ent var criterion erion nn criter. son stat	39.71436 45.32215 10.43091 10.83500 10.28130 2.064093

Results greater than 0.05 show that the homoscedasticity assumption is met, with no heteroscedasticity problem of any order in the model.

EE.UU. Dependent Variable: TN_EU Method: Least Squares Date: 06/25/23 Time: 00:17 Sample: 2010 2021 Included observations: 12

Variable	Coefficient	Std. Error t-Statistic	Prob.
YP_EU	16.99038	25.40450 0.668794	0.5225
P_EU	-1.38E-05	2.00E-05 -0.689655	0.5099
ι 	2960.848	3810.136 0.777098	0.4595
R-squared Adjusted	0.175385 R0.133846	Mean dependent var S.D. dependent var	86.60792 113.4291

squared			
S.E. of			
regression	120.7818	Akaike info criterion	12.68705
Sum squared			
resid	116705.9	Schwarz criterion	12.84868
Log likelihood	-72.12230	Hannan-Quinn criter.	12.62721
F-statistic	0.567165	Durbin-Watson stat	1.215891
Prob(F-statistic)	0.651960		

As shown in Table *, it could be stated that the total demand for avocado in the U.S. is explained by the price of avocado in the country, as well as by the per capita income and its population, this relationship is subject to the following results:

• When the price of avocado increases by 1, on average U.S. demand for avocado decreases by -1.25 percentage points.

• When U.S. per capita income increases by 1, on average their demand for avocado increases by 16.99 percentage points.

• When the U.S. population increases by 1, on average your demand for avocado increases by -1.38 percentage points.

NORMALITY TEST

The Jarque Bera test is used to test the normality of the model, where with a result of 6.21 and a probability of less than 0.05 (0.044) it is considered that the errors are abnormally distributed.

AUTOCORRELATION TEST

Date: 06/25/23 Sample: 2010 Included obser	3 Time: 00:47 2021 rvations: 12	7						
Autocorrela	tion Partial	Correlation		AC	PAC	Q-Stat	Prob	
1.1	1 1	1.1	1	0.047	0.047	0.0338	0.854	
	1	F 1	3	0.083	0.073	0.4289	0.934	
1 1 1	1 1	1.1	4	-0.050	-0.074	0.4825	0.975	
1 1	1		5	-0.055	-0.072	0.5552	0.990	
1.1	1	1 I I I I I I I I I I I I I I I I I I I	6	-0.110	-0.100	0.8957	0.989	
	1 1		7	-0.075	-0.044	1.0839	0.993	
	1 1	- I	8	-0.136	-0.103	1.8631	0.985	
	1 1		9	-0.102	-0.075	2.4495	0.982	
	1 1		10	-0.099	-0.076	3.2059	0.974	
· · · · ·		-	1.11	-0.120	-0.112	0.0220	0.072	
							N	egati
Positive	Zone of					Zone o	f	ve
Autocorrel	Indecisio	No Aut	oco	rrelati	on	Indecis	io Ar	itoco
otion	n	101101	000			n		oloti
ation	11					11	11	ciati
								on
Reject	t Ho	Ac	cep	t Ho		Rej	ject Ho)
0	dl	du	2	4-c	lu	4-dl		4
	0.658	1.864		2.1	36	3.342		
		1	.21	58				

The autocorrelation test determined by the Durbin Watson statistic, which for the model the result is 1.2158, in that sense, at a significance level of 95% we have that dL and dU is equivalent to 0.658 and 1.864 respectively; from these values, it is determined that the autocorrelation falls in the positive autocorrelation zone.

HETEROSCEDASTICITY TEST Heteroskedasticity Test: White

F-statistic	7.491860	Prob. F(8,3)	0.0626
Obs*R-squared	11.42798	Prob. Chi-Square(8)	0.1786
Scaled explained	10.15509	Prob. Chi-Square(8)	0.2543

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/25/23 Time: 00:57 Sample: 2010 2021 Included observations: 12 Collinear test regressors dropped from specification

Variable	Coefficient	Std. Error	t-Statistic	: Prob.
С	8544113.	4218119.	2.025574	0.1359
YP_EU^2	-771.6358	1006.256	-0.766838	0.4990
YP_EU*PRECIO	-187.9659	131.2020	-1.432645	0.2474
YP_EU*P_EU	0.001026	0.000921	1.114653	0.3463
YP_EU	-145110.9	106044.4	-1.368397	0.2647
PRECIO ²	-4.884706	11.27915	-0.433074	0.6942
PRECIO*P_EU	0.000222	9.79E-05	2.267356	0.1082
PRECIO	-45706.42	18113.84	-2.523287	0.0859
P_EU^2	-1.93E-10	1.27E-10	-1.515091	0.2270
R-squared	0.952332	Mean depe	endent var	9725.490
Adjusted R-				
squared	0.825216	S.D. depen	dent var	20312.77
S.E. of regression	8492.193	Akaike info	criterion	21.04539
Sum squared				
resid	2.16E+08	Schwarz cr	iterion	21.40907
Log likelihood	-117.2723	Hannan-Qu	uinn criter.	20.91074
F-statistic	7.491860	Durbin-Wa	tson stat	1.626522
Prob(F-statistic)	0.062636			

Results greater than 0.05 show that the homoscedasticity assumption is met, with no heteroscedasticity problem of any order in the model.

ENGLAND Dependent Variable: TN_ING Method: Least Squares Date: 06/25/23 Time: 01:07 Sample: 2010 2021 Included observations: 12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
YP_ING	-0.476120	0.414108	-1.149748	0.2835
PRECIO	-0.035452	0.043692	-0.811409	0.4406
P_ING	6.62E-06	6.79E-07	9.756830	0.0000
С	-311.7954	31.40058	-9.929608	0.0000
		Mean	dependent	
R-squared	0.951215v	ar		18.62392
Adjusted R-				
squared	0.932921	S.D. deper	ndent var	12.05383
S.E. of				
regression	3.121889	Akaike info	o criterion	5.375955
Sum squared				
resid	77.96951	Schwarz c	riterion	5.537590
Log likelihood	-28.25573	Hannan-Q	uinn criter.	5.316112
F-statistic	51.99545	Durbin-Wa	atson stat	1.526176
Prob(F-				
statistic)	0.000014			

As shown in table *, it could be stated that the total demand for avocado in England is explained by the price of avocado in the country, as well as by the per capita income and its population, this relationship is subject to the following results:

• When the price of avocado increases by 1, on average demand in England decreases by -0.03 percentage points.

• When England's per capita income increases by 1, on average its demand for avocado increases by -0.47 percentage points.

• When the population in England increases by 1, on average its demand for avocado increases by 6.62 percentage points.

NORMALITY TEST

The Jarque Bera test is used to test the normality of the model, where with a result of 0.60 and a probability of less than 0.05 (0.73) it is considered that the errors are normally distributed.

AUTOCORRELATION TEST

Autocorrela	ation Par	tial Correlati	on	AC	PAC	Q-Stat	Prob
1	1 1	1	1	-0.162	-0.162	0.4025	0.526
	1 1	1	2	0.203	0.182	1.0981	0.577
	1		3	-0.179	-0.130	1.6972	0.638
1	1	1	4	-0.309	-0.414	3.7043	0.448
	1. 1		5	-0.173	-0.278	4.4206	0.491
- 1 E	1 1	III (6	0.083	0.170	4.6115	0.595
1	1 1		7	-0.248	-0.328	6.6746	0.464
1	1.1.1	i 1	8	0.325	-0.060	11.114	0.195
) 📫	1 3	1	9	-0.114	-0.078	11.836	0.223
1 E	1 1	i	10	0.092	-0.107	12.545	0.250
) †	1 1	1	11	-0.018	-0.197	12.602	0.320
							Negat
Positive	Zone of					Zone of	ve
Autocorrel	Indecisio	No Ai	utocor	relatio	n I	ndecisio	Autoc
otion	n	11011	400001	i ciutio		naccioic	molot
ation	п					п	rrelat
							on
Rechaz	o Ho	A	Acepto	Но		Recha	azo Ho
0	dl	du	2	4-du		4-dl	4
	0.658	1.864		2.13	5	3.342	
					<u> </u>		

The autocorrelation test determined by the Durbin Watson statistic, which for the model the result is 1.5261, in that sense, at a significance level of 95% we have that dL and dU is equivalent to 0.658 and 1.864 respectively; from these values, it is determined that the autocorrelation falls in the positive autocorrelation zone.

HETEROSCEDASTICITY TEST Heteroskedasticity Test: White

F-statistic	0.526283	Prob. F(9,2)	0.7951
Obs*R-squared Scaled	8.437343	Prob. Chi-Square(9)	0.4907
explained SS	1.730874	Prob. Chi-Square(9)	0.9950

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/25/23 Time: 01:22 Sample: 2010 2021 Included observations: 12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4524.400	6977.843	0.648395	0.5832
YP_ING^2	-0.785751	0.640092	-1.227560	0.3445
YP_ING*PRECI				
0	-0.046409	0.201876	-0.229890	0.8395
YP_ING*P_ING	1.43E-07	1.09E-06	0.131305	0.9076
YP_ING	70.56853	89.85638	0.785348	0.5145
PRECIO ²	0.002812	0.017683	0.159039	0.8882
PRECIO*P_ING	-2.17E-09	3.87E-07	-0.005622	0.9960
PRECIO	0.983610	9.369468	0.104980	0.9260
P_ING^2	2.07E-12	2.32E-12	0.892062	0.4665
P_ING	-0.000229	0.000296	-0.773487	0.5201
		Mean	dependent	
R-squared	0.703112v	ar	•	6.497459

-0.632884	S.D. dependent var	6.520397
8.332048	Akaike info criterion	6.953003
138.8460	Schwarz criterion	7.357092
-31.71802	Hannan-Quinn criter.	6.803395
0.526283	Durbin-Watson stat	2.994094
0.795068		
	-0.632884 8.332048 138.8460 -31.71802 0.526283 0.795068	 -0.632884 S.D. dependent var 8.332048 Akaike info criterion 138.8460 Schwarz criterion -31.71802 Hannan-Quinn criter. 0.526283 Durbin-Watson stat 0.795068

Results greater than 0.05 show that the homoscedasticity assumption is met, with no heteroscedasticity problem of any order in the model.

CONCLUSIONS

1. In the years for which data are available, in general, monthly prices show behavior of higher prices at the beginning of the year and then decrease significantly until the middle and third quarter of the year, to recover from September onwards.

2. As of 2019, 20 companies in Peru exceeded 3300 tons of annual exports.

3. Between 2010 and 2021, the Netherlands represented 35.50 % of all our avocado sales abroad; the USA, 23.93 %, Spain 17.05 % of the global consumption of our exports, while the United Kingdom, with a consumption of 453,527 MT, represents 8.29 % of our exports.

4. Between 2007 and 2021, Peru has had an average annual avocado harvest of 31,021 hectares.

5. The demand for Peruvian avocados in the Netherlands has the following behavior:

a. A 1% increase in price generates a reduction in demand of 0.16%.

b. If per capita income increases by 1%, the demand for avocados increases by 2.7%.

c. A 1% increase in population generates that the demand for avocado increases by 8.23 %.

6. In Spain, the demand for Peruvian avocados shows the following behavior:

a. A 1% increase in price generates a reduction in demand of 0.09 %.

b. If per capita income increases by 1%, the demand for avocado increases by 0.13%.

c. A 1% increase in population generates that the demand for avocado increases by 3.49%.

7. In the U.S., the demand for Peruvian avocados shows the following behavior:

a. A 1% price increase generates a reduction in demand of 1.25%

b. If per capita income increases by 1%, the demand for avocado increases by 16.99%.

c. A 1% increase in the population generates that the demand for avocado decreases by 1.38%.

8. In ENGLAND, the demand for Peruvian avocados has the following behavior:

a. A 1% increase in price generates a 0.03% reduction in demand%

b. If per capita income increases by 1%, avocado demand decreases by 0.47%.

c. Un aumento de 1% en la población genera que la demanda de palta se incrementa en 3.62%.

References

Manuel Flores (2008). Elasticidades de Armington. Discusión teórico-metodológica y estimaciones para Uruguay. https://www.academia.edu/3462073/Elasticidades_de_Armington_Discusi%C3%B3n_te%C3 %B3rico_metodol%C3%B3gica_y_estimaciones_para_Uruguay

Rafael Díaz Castellanos (2021). El mercado mundial de aguacate: 60 años del liderazgo de México y su impacto en la próxima década. https://revistas.anahuac.mx/the_anahuac_journal/article/view/1132

Evelin Heredia y Lizeth Palomino Huayanay (2019). Análisis del comportamiento de las exportaciones de espárragos frescos en el mercado internacional y su impacto en el PBI agropecuario peruano durante 2007-2019. https://repositorio.usil.edu.pe/server/api/core/bitstreams/14b6e9e4-c475-491d-bde5-45556b00e4b4/content

- Villezca B. Pedro y Martínez J. Irma (2002). Efecto de Factores socioeconómicos en el consumo de alimentos en el AMM. https://www.redalyc.org/pdf/402/40250313.pdf
- Sierra y Selva Exportadora (2020) Análisis de mercado de palta 2015-2019). https://www.gob.pe/institucion/sse/informes-publicaciones/1368928-analisis-de-mercadopalta-2015-2019
- OMC (2015). La Ayuda para el comercio en síntesis 2015. REDUCIR LOS COSTOS DEL COMERCIO CON MIRAS A UN CRECIMIENTO INCLUSIVO Y SOSTENIBLE. http://dx.doi.org/10.1787/ayuda_sintesis-2015-es
- INEI (2022). Sistema estadístico nacional Perú Compendio estadístico nacional 2022. https://www.gob.pe/institucion/inei/informes-publicaciones/3655985-compendio-estadisticoperu-2022
- Villanueva F Miriam (2018). Determinantes de la demanda Europea de Palta Peruana: 1996-2016. https://1library.co/document/7qv03p0y-determinantes-de-la-demanda-europea-de-paltaperuana.html
- Arias, F., Montoya C. y Velásquez O. (2018). Dinámica del mercado mundial de aguacate. https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/994
- Alberto Gabriele (1994). Elasticidad precio de las exportaciones agrícolas de Centroamérica. https://www.cepal.org/es/publicaciones/11938-elasticidad-precio-exportaciones-agricolascentroamerica
- CIAT (2017). Boyanza y Elasticidad de los Ingresos Tributarios en América Latina y el Caribe. https://www.ciat.org/Biblioteca/DocumentosdeTrabajo/2017/DT_01_2017_Cardoza.pdf

- Ricardo Peñaloza Webb (1988). Elasticidad de la demanda de exportaciones. La experiencia mexicana. Comercio Exterior, vol. 38, núm. 5, México, mayo de 1988, pp. 381-387
- Maximiliano Albornoz (2016) Elasticidades de comercio exterior en Latinoamérica. Estimaciones para el periodo 1993-2014. https://www.lareferencia.info/vufind/Record/AR 4a55c6af227ae0b95471a2d5ef3ea759/Core
- Guido Zack y Demián Dalle (2016). Elasticidades del comercio exterior de la Argentina: ¿Una limitación para el crecimiento? https://library.fes.de/pdf-files/bueros/argentinien/12530.pdf
- Miguel Cervantes Jiménez y Abraham Aparicio Cabrera (1993). Estudio de la Elasticidad y sus Aplicaciones al Campo del Comercio Internacional. http://www.economia.unam.mx/miguelc/docs/pubs/pub_acadlibinv_199311_EBB_MCJ_AA _UNAM_elasticidad.pdf
- Alvaro escribano Sáez (1996). Funciones de exportación e im´portacion en España: elasticidades a corto y largo plazo. https://e-archivo.uc3m.es/handle/10016/2553#preview
- Jeny Yarcely Linares Tarrillo (2022). INCIDENCIA DE LAS EXPORTACIONES EN EL CRECIMIENTO ECONÓMICO DEL SECTOR AGROPECUARIO PERUANO, 2016 2021. https://repositorio.untrm.edu.pe/handle/20.500.14077/2986
- ADEX (2019). LA PALTA EN LA ALIANZA DEL PACÍFICO. https://www.cien.adexperu.org.pe/wp-content/uploads/2019/08/Palta-Alianza-del-Pacifico1.pdf
- Halah Elsaid Mohamed Bassiony (2008). Estimación de la Oferta de exportación y demanda de importación de aguacate mexicano hacia el mercado europeo. https://www.researchgate.net/publication/272676361_ESTIMACION_DE_LA_OFERTA_D E_EXPORTACION_Y_DEMANDA_DE_IMPORTACION_DE_AGUACATE_MEXICAN O_HACIA_EL_MERCADO_EUROPEO_ESTIMATION_OF_EXPORT_SUPPLY_AND_I MPORT_DEMAND_FOR_MEXICAN_AVOCADO_DESTINED_FOR_THE_EUROPEA
- Maximiliano Albornoz (2018). Elasticidades del comercio exterior en América Latina. Estimaciones para 1993-2014. http://www.scielo.org.ar/pdf/ciclos/v29n50/v29n50a03.pdf
- Bravo Ponce Julissa, Hermosilla Toledo Cerila Yanina y Tolentino Carlos Tony Junior (2018). ELASTICIDADES DE OFERTA Y DEMANDA DE LOS PRINCIPALES PRODUCTOS AGROPECUARIOS EN EL PERU – 2016. https://repositorio.unheval.edu.pe/handle/20.500.13080/3805
- Chalco García, Isaías Alexssander (2020). TLC entre el Perú y la Unión Europea: una aplicación del modelo de gravedad. https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/20162
- ERNESTO J. VERES FERRER y JOSE M. PAVÍA (2012). LA ELASTICIDAD: UNA NUEVA HERRAMIENTA PARA CARACTERIZAR DISTRIBUCIONES DE PROBABILIDAD. https://www.researchgate.net/publication/261698394_La_Elasticidad_Una_Nueva_Herramie nta_para_Caracterizar_Distribuciones_de_Probabilidad
- OMC (1994). Acuerdo General sobre Aranceles Aduaneros y Comercio de 1994. https://www.wto.org/spanish/docs_s/legal_s/06-gatt_s.htm
- Veres F. Ernesto y Pavia Jose (2012). LA ELASTICIDAD: UNA NUEVA HERRAMIENTA PARA CARACTERIZAR DISTRIBUCIONES DE PROBABILIDAD. https://dialnet.unirioja.es/servlet/articulo?codigo=4215831
- Blaug Mark (1988). Teoría Económica en retrospectiva. https://www.casadellibro.com/libro-teoria-economica-en-retrospectiva/9788437502588/384485