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Abstract 

This paper proposes, a Bayesian reciprocal bridge composite quantile regression is 

proposed for variable selection and estimation in ordinal Longitudinal  data. A new 

Gibbs sampling algorithm is constructed for sampling from the full conditional posterior 

distributions. The proposed approach is illustrated using simulation studies.  By using the 

simulation studies example, we show that the performance of the proposed approach is 

very well compared with the existing approaches.  

 

Keywords: Reciprocal Bridge, Composite Quantile Regression, Gibbs sampler, Ordinal 

Longitudinal data.  

 

1. Introduction 

Quantile regression (QR) has attracted much   studies on theoretical properties (see e.g 

,Koenker,2005). All of this studies point to many benefits of approach . Most attractive, 

the ability to introduce unusual errors, and thus make it insensitive to covariance and 

outliers (Koenker and Bassett,Koenker,2005). Moreover, the quantile regression of the 

other features compared to the mean regression gives more detail to the relationship 

between the response variable and the predictors, thus the quantile regression presented 

by ( Koenker and Bassett 1978) was an extension of the standard mean regression. These 

privileges have led to a practical application of interest in a number of fields such as 

ecology, science, economics, finance, medicine, and genetic studies, and natural 

phenomena (see,Yu et al., 2003; Koenker,2005; Alhamzawi et al. 2011). 

 The features of quantile regression became attracted when the data does not satisfy the 

assumptions of the mean regression. complex computational difficulties were dealt with, 

especially the non-differentiation of the loss function. Quantile regression estimation is 

done through the use of special algorithms and reliable estimation methods. classical 

methods used the simple algorithm and the internal point algorithm. Bayesian methods 

used the technique samples from Markov chain Monte Carlo(MCMC).the challenge for 

the development of Bayesian quantile regression is the error does not follow any 

distribution. Koenker and Machado (1999) showed that the objective function is equal to 

the exponent in the asymmetric Laplace distribution (ALD) (Kotz et al.,2001;Yu and 

Zhang,2005). this distribution was implemented by Yu and Moyeed (2001). then the 

algorithm was developed see Tsioonas (2003), ( Reed and Yu (2009) . Finally Kozumi and 

Kobayshi (2011) proposed a Gibbs  sampling  assuming the exponential natural mixture 

of (ALD). 
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Composite  quantile regression appeared as a parametric estimation model. It possesses 

the characteristics of quantile regression (free distribution, variance, and immunity), 

moreover, it is superior to single quantile regression in efficiency over median regression. 

Regularization methods (Koenker 2004) have proven effective in selecting a variable and 

estimating a coefficient when the model contains a large number of variables that reduce 

the accuracy of the prediction. 

Quantile regression differs when the response is ordinal, in which the dependent variable 

is an ordinal discrete value. the goal of interest in ordinal quantile regression is to obtain a 

richer description of the effect of covariates on the results. Ordinal quantile regression in 

the literature was estimated using simulated annealing by Zhou (2010). The Bayesian 

estimate of ordinal quantile regression was presented for the first time in Rahman (2016). 

As a special case we will address the longitudinal ordinal data. 

ordinal Longitudinal data appear in many fields, including medicine, economics, and 

social studies. 

Longitudinal data  is a set of observations for each variable in different periods of time. 

Koenker (2004) used quantile regression for longitudinal data. Geraci and Bottai (2007)  

proposed Bayesian quantile regression for longitudinal data using the (ALD ) distribution 

of errors. Alhamzawi and Yu (2014) suggested a method of regularization with mixed 

quantile regression . A Bayesian quantile regression method for parameter estimation in 

longitudinal ordinal data was introduced by Alhamzawi and Ali (2018). 

this study, the composite quantile regression approach will be addressed with longitudinal 

ordinal data using the bridge penalty function. The approach presents a method of 

variable selection and parameter estimation that is more efficient than the regularization 

method of single quantile regression with longitudinal ordinal data. In Sect. 2, we 

describe the considered model and its hierarchical representation. In Sect. 3, the Gibbs 

samplers of Bayesian bridge-randomized QR for ordinal longitudinal data is presented. In 

Sect. 4, numerical studies are implemented to illustrate the proposed methods. Section 5 

provides a real data example to illustrate the proposed estimation procedure. The last 

section draws some conclusions. 

 

2. Methods 

We define the response variables 𝐲𝐢 for 𝐧 of the samples indexed by 𝐢 ∈ {𝟏, … , 𝐧}, with k  

of the covariates 𝐱𝐢. 

we begin by defining the continuous response variable 𝐲𝐢, starting from the classical 

model up to the Bayesian approach. Next we present the composite quantile regression 

approach and variable selection method for longitudinal ordinal 𝐲𝐢 and associated 

inference methods. 

2.1.  Quantile Regression   

Quantile regression is concerned with estimating the parameters 𝛃̂ of the qth quantile of 

𝐲|𝐱 . 

Quantile regression has emerged as an alternative to the Standard Model. Standard 

regression estimates parameters that minimize the sum of squares of error as follows 

𝐚𝐫𝐠𝐦𝐢𝐧 ∑ (𝐲𝐢 − 𝐱𝐢
𝐓𝛃)

𝟐𝐧
𝐢=𝟏 .                          (1) 

Quantile inference uses a similar method, but at a conditional quantile. More precisely, 

the optimization problem depends on 𝛕th and this work is done by the check function, and 

the model can be written as follow: 

  ∑ 𝛒𝛕(𝐲𝐢 − 𝐱𝐢
𝐓𝛃)𝐧

𝐢=𝟏 .                                  (2) 
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where 𝛒𝛕(. )is the check function defined by 

 𝛒𝛕(𝐭) =
|𝐭|+(𝟐𝛕−𝟏)𝐭

𝟐
 ,                        (3) 

In Bayesian approaches, koenker and D,orey (1987)suggested that miniaturization can be 

achieved using an algorithm while Koenker and Machado (1999) proposed the estimated 

of 𝛃can be through the link between asymmetric Laplace distribution (ALD) and the 

unknown parameters 𝛃 . 

𝐟(𝐲|𝛍, 𝛔) =
𝛕(𝟏−𝛕)

𝛔
𝐞𝐱𝐩 {

𝛒𝛕(𝐲−𝛍)

𝛔
},                          (4) 

the model of Bayesian QR take form of : 

𝐐𝐲𝐢
(𝛕|𝐱𝐢) = 𝐛𝛕 + 𝐱𝐢

𝐓𝛃,                    (5) 

where 𝐛𝛕 is the quantile intercept. The regression parameters 𝐛𝛕 and 𝛃 are estimated by 

minimizing 

𝐦𝐢𝐧 ∑ 𝛒𝛕(𝐲𝐢 − 𝐛𝛕 − 𝐱𝐢
𝐓𝛃)𝐧

𝐢=𝟏 ,                           (6) 

Zou and Yuan (2008) proposed composite quantile regression (CQR) as a more efficient 

and robust approach. The CQR estimators of 𝐛𝐪 and 𝛃 can be estimated by minimizing 

𝐦𝐢𝐧 ∑ {∑ 𝛒𝛕(𝐲𝐢 − 𝐛𝛕𝐤
− 𝐱𝐢

𝐓𝛃)𝐧
𝐢=𝟏 }𝐊

𝐤=𝟏 ,            (7) 

When the solution to minimize is not differentiable. than will not be close form solution 

for 𝛃 (Koenker,2005).  

Huang and Chen (2015) and Alhamzawi (2016) show that the minimization problem (7) 

can be cast into a pseudo likelihood setting of a CQR of the form: 

𝐟(𝐲|𝐱) = ∏ ∏ [
𝛕(𝟏−𝛕)

𝛔
𝐞𝐱𝐩 {−

𝛒𝛕(𝐲𝐢−𝐛𝛕𝐤
−𝐱𝐢

𝐓𝛃)

𝛔
}]𝐧

𝐢=𝟏
𝐊
𝐤=𝟏 ,                  (8) 

One of the attractive properties of the ALD is that it can be viewed as a normal-

exponential mixture representation, which brings Gibbs algorithm and hierarchical 

formulation for Bayesian QR. See the detail from Kozumi and Kobayashi (2011) and 

Alhamzawi and Yu (2013b). This mixture representation can be written as 𝛆𝐢 = 𝛉𝐯𝐢 +

√𝟐𝛔𝐯𝐢𝐮𝐢 ,                       

Where  𝐯𝐢    and   𝐮𝐢   are mutually independent, 𝐮𝐢~𝐍(𝟎, 𝟏),𝐯𝐢~𝐞𝐱𝐩 (
𝟏

𝛕(𝟏−𝛕)
),and 𝛉 =

𝟏−𝟐𝛕

𝛕(𝟏−𝛕)
 . 

Then the joint distribution of y given by  

𝐩(𝐲|𝐱, 𝛃, 𝐛𝐪, 𝐯, 𝛔) = ∏ ∏ (
𝟏

√𝟒𝛑𝛔𝐯𝐢
) 𝐞𝐱𝐩 {−

(𝐲𝐢−𝐛𝛕−𝐱𝐢
𝐓𝛃−𝛉𝐯𝐢)

𝟐

𝟒𝛔𝐯𝐢
}𝐧

𝐢=𝟏
𝐊
𝐤=𝟏 ,                 (9) 

 

3. Ordinal Longitudinal Data with Bayesian Composite Quantile Regression 

method 

The response variable 𝐲𝐢𝐣 at sample 𝐢𝐭𝐡 measured at time 𝐣𝐭𝐡 where  𝐢 = 𝟏, … , 𝐧 and 𝐣 =

𝟏, … , 𝐉 , can be modeled through the ordinal latent variable 𝐳𝐢𝐣  as follows: 

𝐲𝐢𝐣 = {

𝟏          𝐢𝐟           𝛅𝟎 < 𝐳𝐢𝐣 ≤ 𝛅𝟏;

𝐜       𝐢𝐟            𝛅𝐜−𝟏 < 𝐳𝐢𝐣 ≤ 𝛅𝐜

𝐂       𝐢𝐟          𝛅𝐂−𝟏 < 𝐳𝐢𝐣 ≤ 𝛅𝐂;

;        𝐜 = 𝟐, … , 𝐂 − 𝟏;                   (10)        
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Where 𝛅𝟎, … , 𝛅𝐂 are cut-points, that fall with the period −∞ = 𝛅𝟎 < 𝛅𝟏 < ⋯ < 𝛅𝐂−𝟏 <
𝛅𝐂 < +∞. Then ,the 𝐤𝐭𝐡 quantile regression model for ordinal longitudinal data using 𝐳𝐢𝐣  

as: 

𝐳𝐢𝐣 = 𝐛𝛕𝐤
+ 𝐱𝐢𝐣

𝐓𝛃 + 𝛆𝐢𝐣 ,                                                      (11) 

Where 𝐱𝐢𝐣 is a  𝐤 × 𝟏 vector of explanatory variables , 𝛃 is a 𝐤 × 𝟏 vector for model 

parameters. 

Assuming that the error 𝛆𝐢𝐣of the unobserved response 𝐲𝐢𝐣 has a SLD as in (4), we have 

𝛆𝐢𝐣 = 𝛉𝐯𝐢𝐣 + √𝟐𝛔𝐯𝐢𝐣𝐮𝐢𝐣 , (Kozumi and Kobayashi, 2011). Here, the latent variable 𝐯𝐢𝐣 

follows an exponential distribution, and 𝐮𝐢𝐣follows the standard normal distribution. Then  

equation (9) can be rewritten as hierarchical Bayesian model using longitudinal ordinal 

composite quantile regression  

𝐩(𝐳|𝐱, 𝛃, 𝐛𝐪, 𝐯, 𝛔) = ∏ ∏ ∏  
𝐉
𝐣=𝟏 (

𝟏

√𝟒𝛑𝛔𝐯𝐢𝐣
) 𝐞𝐱𝐩 (−

(𝐳𝐢𝐣−𝐛𝛕𝐤
−𝐱𝐢𝐣

𝐓𝛃−𝛉𝐯𝐢𝐣)
𝟐

𝟒𝛔𝐯𝐢𝐣
)𝐧

𝐢=𝟏
𝐊
𝐤=𝟏  ,             (12)  

3.1 Bayesian Reciprocal bridge approach of the model 

The reciprocal bridge estimator can be written by use the  formula in (Alhamzawi 

,Mallick . 2020 ) which following: 

𝐚𝐫𝐠𝐦𝐢𝐧 ∑ {∑ ∑  
𝐉
𝐣=𝟏 𝛒𝛕𝐤

(𝐳𝐢𝐣 − 𝐛𝛕𝐤
− 𝐱𝐢𝐣

𝐓𝛃)𝐧
𝐢=𝟏 } + 𝛌 ∑

𝟏

|𝛃𝐠|
𝛂

𝐆
𝐠=𝟏 𝐈{𝛃𝐠 ≠ 𝟎}𝐊

𝐤=𝟏                (13)                   

where  λ  is parameter of regularization  for α , when it is equal to zero, it corresponds L0, 

and when it is equal to one, it shows reciprocal LASSO, and when it is equal to 2, 

reciprocal ridge appear, where the Bayesian approach solves the problem of 

miniaturization in cases of small samples as well. 

Noting the penalty term in (13), the bridge estimates can be interpreted as posterior mode 

estimates when the regression parameters have Inverse Generalized Gaussian (IGG) 

distribution (Mallick et al., 2020) of the form 

𝛑(𝛃) = ∏
𝛌

𝟏
𝛂

𝟐𝛃𝐠
𝟐⌈(

𝟏

𝛂
+𝟏)

𝐆
𝐠=𝟏 𝐞𝐱𝐩 {−

𝛌

|𝛃𝐠|
𝛂} 𝐈{𝛃𝐠 ≠ 𝟎},                                      (14) 

The Gibbs sampler for the Bayesian reciprocal bridge exploits the following 

representation of the scale mixture of normal(SMN) following Armagan ,Dunson and Lee 

(2013);Mallick , Alhamzawi ,and Svetnik(2020). If we assume that 𝛃~𝐍(𝟎, 𝐥)𝐈(|𝛃| >

ɳ),𝐥~𝐄𝐱𝐩 (
𝛏𝟐

𝟐
⁄ ),and 𝛏~𝐄𝐱𝐩(ɳ),then the inverse double exponential distribution for 𝛃 

with scale parameter 𝛌 > 𝟎 arises when ɳ follows Inverse Gamma (2,λ) . 

Where u =
1

ɳ
 ,l = (l1, … , lG)′ and ξ = (ξ1, … , ξG)′. To specify a prior distribution for δ  , 

we follow Alhamzawi (2016), we assign order statistics from uniform (δ0, δC)distribution 

for the C − 1unknown cut-points : 

Pδ = (C − 1)! (
1

δmax−δmin
)

C−1
I(I ∈ H),                                    (10) 

Where δ = (δ0, δ1, … , δC ) and H = {(δmin, δ1, … , δmax )|δmin < δ1 < ⋯ < δC−1 <
δmax}. 

To summarize ,our Bayesian hierarchical formulation : 

zij|x~Nn(zij + bτk
+ xij

Tβ + θv, 2σv), 

β|l~ ∏ N(0, T2)I {|βg|
α

>
1

ug
}G

g=1 , 
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l|ξ~ ∏ Exp(ξg
2)G

g=1 , 

ξ|u~ ∏ Exp (
1

ug
)G

g=1 ,  

uij~ ∏ Gamma (2, λ),G
g=1                                                                                 (15) 

σ~σ−1,  

λ~λ−1, 

β|zij~NP((X′Ω−1X + T−1)−1X′Ω−1(z − ϑv), (X′Ω−1X + T−1)−1) ∏ I {|βg|
α

>
1

ug
} ,G

g=1   

vij
−1|zij~Inverse − Gaussian (

1

2
,

1

|zij+bτk
+xij

Tβ|
,

1

2σ
),   

l−1|zij~ ∏ Inverse − Gaussian (
1

2
, √

ξg
2

βg
2 , ξg

2) ,G
g=1    

ξ|zij~ ∏ Gamma (|βg|
α

+
1

ug
) ,G

g=1    

u|zij~ ∏ Exponential(λ)I {ug >
1

|βg|
α}G

g=1 ,   

σ|zij~Inverse − Gamma (a +
3n

2
, b +

1

4
(zij − bτk

− xij
Tβ − θv)

′
V−1(zij − bτk

− xij
Tβ −

θv)),   

λ|zij~Gamma (c + 2p, d + ∑
1

|βg|
α

G
g=1 ),  

Algorithm 1. MCMC sampling for the Bayesian reciprocal Bridge composite quantile 

regression (SMN) 

Input: (z , x ) 

Initialize: (bq, β, σ, v, u, λ, α) 

For  t = 1, … , (tmax + tburn−in) do 

1. sample v|.~ ∏  n
i=1 Inverse Gaussian (

1

2σ
,

1

|zij−bτk
−xij

Tβ|
 ,

1

2σ
) 

2. sample  u|.  ~ ∏ ExponentialG
g=1 (λ)I {ug >

1

|βg|
α}   

3. sample l|.~ ∏ Inverse − Gaussin (
1

2
, √

ξg
2

βg
2 , ξg

2)G
g=1                                      

4.  sampleξ |. ~ ∏ Gamma (2, (|βg|
α

+
1

ug
))G

g=1      

 

5. sample β|. From a truncated multivariate normal proportionl to  

NP((X′Ω−1X + T−1)−1X′Ω−1(z − ϑv), (X′Ω−1X + T−1)−1) ∏ I {|βg| >
1

ug
}G

g=1 ,  

β̂ = (∑ ∑ ∑  
J
j=1

x′x

2σvij

K
k=1

n
i=1 ) and β̂ = B̂ (∑ ∑ ∑  

J
j=1

(xi(zij−bqk
−xij

Tβ−θvij))

2σvij

K
k=1

n
i=1 )  



Zahraa Saad Anber AL-yassiry et al. 882 

 

 
Migration Letters 

 

6. samplebτ|.~N (
∑ ∑ ∑  

J
j=1

K
k=1 (zij−bτk

−xij
Tβ−θvij)n

i=1

∑ ∑  
J
j=1

1
2σvij

⁄
n
i=1

,
1

∑ ∑  
J
j=1

1
2σvij

⁄
n
i=1

)  

7. sampleσ|. ~Inverse Gamma (a,
3n

2
, b +

1

4
∑ ∑  K

k=1 ∑  
J
j=1

n
i=1 (zij − bτk

+ xij
Tβ −

ϑvij)
′
V−1 ∑ ∑  ∑  

J
j=1

K
k=1

n
i=1 (zij − bτk

+ xij
Tβ − ϑvij)) 

8.   sample  λ|. ~Gamma (γ + 2p, d + ∑
1

|βg|
α

G
g=1 ) 

9. sample δc,  with c  from 1 to C − 1, from a uniform distribution over the interval  
(min {min(zi|yi = c + 1), δc+1, δC}, max{max(zi|yi = c)}, δc−1, δ0).              

10. Sample zi , for i from 1 to n, from truncated normal (TN) distribution  

TN(δc−1,δc)(zi + bτk
+ xi

′β + ϑv, 2σv). 

end for  

 

4. Simulation studies Simulation study 1 

In this section, we set zi as follows: 

zij = β1x1ij+β2x2ij+β3x3ij+β4x4ij+β5x5ij+β6x6ij+εi, (i = 1, · · · , 40; j = 1, · 

· · , 10), where x1ij, x2ij and x3ij were sampled independently from uniform 

distribution on the interval [−1, 1], x4ij, x5ij and x6ij were sampled independently 

from standard normal distribution (β1, β2, β3, β4, β5, β6) = (−4, −8, 12, 0, 0, 0) and εi 

are sampled from a logistic distribution with location parameter µ = 0 and scale 

parameter s = 1. The response variable was sampled according the cut-points (-0.50, 

0, 0.50). The performance of the proposed approach for the reciprocal adaptive Bridge 

ordinal longitudinal composite quantile regression, referred to as “rABOLCQR” 

approach is compared with Bayeian ordinal quantile regression (?), referred to as 

“BOQR” and Bayeian model selection in ordinal quantile regression (?), referred to 

as “BMOQR”. In Table 1 the number of true and false zero regression coefficients is 

compared based on 100 generated datasets. The results show that the proposed method 

perform very well in terms of average numbers of correct and wrong zeros. 

Convergence of the proposed Gibbs sampler was conducted using the multivariate 

potential scale reduc- tion factor (MPSRF) (Brooks and Gelman, 1998) which is 

given by (Alhamzawi, 2016): 

Table 1: Comparing average numbers of correct and wrong zeros for different 

methods in Simulation example 1, averaged over 100 replications. The standard 

deviations are listed in the parentheses. 

 Methods  

 rABOLCQR BOQR BMOQR AIC BIC 

correct 2.45 (0.22) 1.33 (0.14) 1.29 (0.53) 1.01 (0.39) 1.05 (0.23) 

wrong 0.07 (0.21) 0.47 (0.56) 0.48 (0.46) 0.31 (0.31) 0.18 (0.49) 
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Figure 1: MPSRF for the Simulation study 1. 

Figure (1) shows that the MPSRF for the proposed methods becomes stable and close 

to 1 after about 2000 iterations. 

Simulation study 2 

This simulation study follows the same setup in simulation study 1 except that, we 

add 10 dummy variables. The results are summarized in Table 2, which presented the 

number of true and false zero regression coefficients is compared based on 100 

generated datasets. The results show that the proposed method perform very well in 

terms of average numbers of correct and wrong zeros. 

Table 2: Comparing average numbers of correct and wrong zeros for different 

methods in Simulation example 2, averaged over 100 replications. The standard 

deviations are listed in the parentheses. 

 Methods  

 rABOLCQR BOQR BMOQR AIC BIC 

correct 11.99 (0.17) 6.42 (0.35) 6.92 (0.61) 5.42 (0.44) 8.17 (0.34) 

wrong 0.11 (0.33) 0.53 (0.47) 0.58 (0.68) 2.17 (0.45) 1.19 (0.76) 
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Figure 2: MPSRF for the Simulation study 2. 

Figure (2) shows that the MPSRF for the proposed methods becomes stable and close 

to 1 after about 2000 iterations. 

 

5. Conclusion and Discussion 

In this paper, we propose the Bayesian reciprocal bridge composite quantile regression  

for simultaneous estimation and variable selection in ordinal longitudinal data. This 

method gives sparse solution and enjoys the computational advantages of reciprocal 

bridge.  A new Gibbs sampling algorithm is constructed for sampling from the full 

conditional posterior distributions. The proposed approach is illustrated using  extensive 

simulation examples shows that the proposed methods often outperform the existing 

methods. 
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