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Abstract 

In this work, we use the homotopy analysis method (HAM) and combine it with the 

sumudu transform method (STM). This connection between the two methods is called the 

Sumudu homotopy analysis method (SHAM), and we use the method to solve generalized 

Hirota-Satsuma coupled kdv systems. And we compare the approximate solutions of this 

method with the Sumudu transform method. Comparison tables and graphics showed that 

SHAM is much closer than STM to the exact solution.  

 

Keywords: hirota-satsuma coupled kdv systems, homotopy analysis method, sumudu 
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1. Introduction 

Some engineering problems require the use of mathematical models directly in order to 

be understood and solved. To comprehend and analyze these mathematical models, it is 

typically necessary to use elements of statistics, linear algebra, or differential and integral 

calculus [1]. 

Let's start with the metamorphosis of Sumudu: Watugala discovered the Sumudu 

transformation in 1993, which was regarded as innovative for this century and solved 

control engineering problems [2]. For this transition, Weerakoon provided a challenging 

inverse formula [3]. Asiru employed the Sumudu transform to resolve systems of discrete 

dynamic equations and integral equations in his studies [4], [5]. Mohamed Z. Mohamed, 

Amjad E. Hamza, and Abdelilah Kamal H. Sedeeg, outlined a novel technique known as 

the conformable double Sumudu composition method for solving one-dimensional 

regular and singular conformable functional Burger's equations [6]. 

In 1992, Liao proposed the homotopy analysis method as a broad analytic approach for 

nonlinear problems using the fundamental notions of homotopy in topology (HAM) [7]. 

Numerous nonlinear problems have been successfully solved using this approach in the 

sciences and engineering. 

The ongoing study in this area served as motivation and inspiration for the sumudu 

homotopy analysis technique (SHAM), which we provide in this paper as an 

approximation method for solving the nonlinear equations. It is crucial to remember that 

the suggested method is an elegant combination of the Sumudu transform method and the 

homotopy analysis method. In many different domains, the homotopy analysis method 

(HAM) is frequently employed to resolve strong non-linear issues. The outcomes of the 

HAM are independent of both tiny and big physical parameters, unlike the perturbation 

approach. The fact that the homotopy analysis technique (HAM) gives users a choice in 
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the expression format for higher-order approximation series solutions is another benefit. 

The homotopy analysis method (HAM) allows for the simple control of a series solution's 

convergence [8]. 

In 2020, the author A.K. Alomari used the sumudu transforms and homotopy analysis 

method (SHAM) for solving a system of fractional partial differential equations [9]. In 

(2017), the authors, Rishi Kumar Pandey and Hradyesh Kumar Mishra, solved time 

fractional third-order dispersive type PDE equations using a combination of sumudu 

transforms and the homotopy analysis method. [10]. In 2022, the authors R. K. Bairwaa 

and Karan Singh solved the time-fractional Schrödinger equations under initial conditions 

by using a newly developed analytical method known as the Sumudu transform iterative 

method [11]. Also in 2022, the authors Shrooq M. Azzo and Saad A. Manaa solved the 

generalized hirota-satsuma coupled kdv systems by used sumudu decomposition method 

[12]. And in 2023, the authors Rafał Brociek, Agata Wajda, Marek Błasik and Damian 

Słota, used of the homotopy analysis method (HAM) to solve the fractional heat 

conduction equation [13].   

In this work, we used the generalized Hirota–Satsuma coupled Korteweg–de Vries (KdV) 

equation [14] : as 

𝑈𝜏 =
1

2
𝑈𝜒𝜒𝜒 − 3𝑈𝑈𝜒 + 3(𝑉𝑊)𝜒,  

𝑉𝜏 = −𝑉𝜒𝜒𝜒 + 3𝑈𝑉𝜒,                                                                                  

𝑊𝜏 = −𝑊𝜒𝜒𝜒 + 3𝑈𝑊𝜒.                           (1) 

The exact solitary solution of equation (1) as in [14]–[16] is: 

𝑈(𝜒, 𝜏) =
1

3
(𝛾 − 2𝑎2) + 2𝑎2 tanh2(𝑎(𝜒 + 𝛾𝜏)), 

𝑉(𝜒, 𝜏) =
−4𝑎2𝑐0(𝛾+𝑎2)

3𝑐1
2 +

4𝑎2(𝛾+𝑎2)

3𝑐1
tanh(𝑎(𝜒 + 𝛾𝜏)),                           

𝑊(𝜒, 𝜏) = 𝑐0 + 𝑐1 tanh(𝑎(𝜒 + 𝛾𝜏)).                    (2) 

and initial conditions are: 

𝑈(𝜒, 0) =
1

3
(𝛾 − 2𝑎2) + 2𝑎2 tanh2(𝑎𝜒), 

𝑉(𝜒, 0) =
−4𝑎2𝑐0(𝛾+𝑎2)

3𝑐1
2 +

4𝑎2(𝛾+𝑎2)

3𝑐1
tanh(𝑎𝜒) ,        

 𝑊(𝜒, 0) = 𝑐0 + 𝑐1 tanh(𝑎𝜒).                     (3)  

where 𝑎, 𝑐0, 𝑐1 ≠ 0 𝑎𝑛𝑑 𝛾 arbitrary constants. 

 

2. Basic idea of sumudu homotopy analysis method (SHAM) 

To illustrate the basic idea of this method, we consider an equation 𝑁[𝜔(𝜒)] = 𝑔(𝜒), 

where N represents a general nonlinear ordinary or partial differential operator including 

both linear and nonlinear terms. The linear terms are decomposed into L+R, where L is 

the highest order linear operator and R is the remaining linear operator. Thus, the 

equation can be written as [17] 

𝐿𝜔 + 𝑅𝜔 + 𝑁𝜔 = 𝑔(𝜒).                                (4) 

where 𝑁𝜔, indicates the nonlinear terms. 

by applying the sumudu transform on both sides of equation (4), we get 

 𝑆[𝐿𝜔] + 𝑆[𝑅𝜔] + 𝑆[𝑁𝜔] = 𝑆[𝑔(𝜒)].                  (5) 

using the differentiation property of the sumudu transform, we have 
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𝑆[𝜔]

𝑠𝑛 − ∑
𝜔(𝑘)(0)

𝑠(𝑛−𝑘) + 𝑆[𝑅𝜔] + 𝑆[𝑁𝜔] = 𝑆[𝑔(𝜒)]𝑛−1
𝑘=0 .        (6) 

on simplifying  

𝑆[𝜔] − 𝑠𝑛 ∑
𝜔(𝑘)(0)

𝑠(𝑛−𝑘) + 𝑠𝑛[𝑆[𝑅𝜔] + 𝑆[𝑁𝜔] − 𝑆[𝑔(𝜒)]]𝑛−1
𝑘=0 = 0.                                            

                                (7) 

we define the nonlinear operator 

𝑁[𝜑(𝜒, 𝜏; 𝑞)] = 𝑆[𝜑(𝜒, 𝜏; 𝑞)] − 𝑠𝑛 ∑
𝜑(𝑘)(𝜒,𝜏;𝑞)(0)

𝑠(𝑛−𝑘) + 𝑠𝑛[𝑆[𝑅𝜑(𝜒, 𝜏; 𝑞)] +𝑛−1
𝑘=0

𝑆[𝑁𝜑(𝜒, 𝜏; 𝑞)] − 𝑆[𝑔(𝜒)]].             (8) 

where 𝑞 ∈ [0,1] and 𝜑(𝜒, 𝜏; 𝑞) is a real function of 𝜒, 𝜏 and q. we construct a homotopy 

as follows  

(1 − 𝑞)𝑆[𝜑(𝜒, 𝜏; 𝑞) − 𝜔0(𝜒, 𝜏)] = ℏ𝑞𝐻(𝜒, 𝜏)𝑁[𝜔(𝜒, 𝜏)].                                  (9) 

where S denotes the sumudu transform, 𝑞 ∈ [0,1]  is the embedding parameter, 𝐻(𝜒, 𝜏) 

denotes a nonzero auxiliary function, ℏ ≠ 0 is an auxiliary parameter, 𝜔0(𝜒, 𝜏) is an 

initial guess of 𝜔(𝜒, 𝜏) and 𝜑(𝜒, 𝜏; 𝑞) is a unknown function. Obviously, when the 

embedding parameter 𝑞 = 0 and 𝑞 = 1, it holds  

𝜑(𝜒, 𝜏; 0) = 𝜔0(𝜒, 𝜏), 𝜑(𝜒, 𝜏; 1) = 𝜔(𝜒, 𝜏).               (10) 

respectively. Thus as q increases from 0 to 1, the solution 𝜑(𝜒, 𝜏; 𝑞) varies from the 

initial guess 𝜔0(𝜒, 𝜏) to the solution 𝜔(𝜒, 𝜏). Expanding 𝜑(𝜒, 𝜏; 𝑞)in Taylor series with 

respect to q, we have 

𝜑(𝜒, 𝜏; 𝑞) = 𝜔0(𝜒, 𝜏) + ∑ 𝜔𝑚(𝜒, 𝜏)𝑞𝑚∞
𝑚=1 .              (11) 

where  

𝜔𝑚(𝜒, 𝜏) =
1

𝑚!

𝜕𝑚𝜑(𝜒,𝜏;𝑞)

𝜕𝑞𝑚 |
𝑞=0

.                           (12) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter ℏ, and the 

auxiliary function are properly chosen, the series (11) converges at 𝑞 = 1, then we have 

𝜑(𝜒, 𝜏; 𝑞) = 𝜔0(𝜒, 𝜏) + ∑ 𝜔𝑚(𝜒, 𝜏)∞
𝑚=1 .                (13) 

which must be one of the solutions of the original nonlinear equations. According to the 

equation (13), the governing equation can be deduced from the zero-order deformation 

(9). define the vectors 

�⃗⃗� 0 = {𝜔0(𝜒, 𝜏), 𝜔1(𝜒, 𝜏), … , 𝜔𝑚(𝜒, 𝜏)}.                (14) 

differentiating the zeroth-order deformation equation (9) m-times with respect to q and 

then dividing them by 𝑚! And finally setting 𝑞 = 0, we get the following mth-order 

deformation equation: 

𝑆[𝜔𝑚(𝜒, 𝜏) − 𝑋𝑚𝜔𝑚−1(𝜒, 𝜏)] = ℏ𝐻(𝜒, 𝜏)ℛ𝑚(�⃗⃗� 𝑚−1).  (15) 

applying the inverse sumudu transform, we have 

 𝜔𝑚(𝜒, 𝜏) = 𝑋𝑚𝜔𝑚−1(𝜒, 𝜏) + ℏ𝑆−1[𝐻(𝜒, 𝜏)ℛ𝑚(�⃗⃗� 𝑚−1)].                                 (16) 

where 

ℛ𝑚(�⃗⃗� 𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1𝑁[𝜑(𝜒,𝜏;𝑞)]

𝜕𝑞𝑚−1 |
𝑞=0

.                   (17) 
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and  

𝑋𝑚 = {
0,   𝑚 ≤ 1,
1,   𝑚 > 1

   .                                   (18) 

 

3. Applying SHAM to the equation 

By applying the aforesaid method subject to equation (1), we have 

𝑆[𝑈] − 𝑈0 − 𝑠 [𝑆 [
1

2
𝑈𝜒𝜒𝜒 − 3𝑈𝑈𝜒 + 3(𝑉𝑊)𝜒]] = 0, 

𝑆[𝑉] − 𝑉0 − 𝑠 [𝑆[−𝑉𝜒𝜒𝜒 + 3𝑈𝑉𝜒]] = 0, 

𝑆[𝑊] − 𝑊0 − 𝑠 [𝑆[−𝑊𝜒𝜒𝜒 + 3𝑈𝑊𝜒]] = 0.             (19) 

the nonlinear operator is  

𝑁1[𝜑1(𝜒, 𝜏; 𝑞)] = 𝑆[𝜑1(𝜒, 𝜏; 𝑞)] − 𝜑1(𝜒, 𝜏; 0) − 𝑠 [𝑆 [
1

2
(𝜑1(𝜒, 𝜏; 𝑞))

𝜒𝜒𝜒
−

3𝜑1(𝜒, 𝜏; 𝑞)(𝜑1(𝜒, 𝜏; 𝑞))
𝜒

+ 3(𝜑2(𝜒, 𝜏; 𝑞)𝜑3(𝜒, 𝜏; 𝑞))
𝜒
]], 

𝑁2[𝜑2(𝜒, 𝜏; 𝑞)] = 𝑆[𝜑2(𝜒, 𝜏; 𝑞)] − 𝜑2(𝜒, 𝜏; 0) − 𝑠 [𝑆 [−(𝜑2(𝜒, 𝜏; 𝑞))
𝜒𝜒𝜒

+

3𝜑1(𝜒, 𝜏; 𝑞)(𝜑2(𝜒, 𝜏; 𝑞))
𝜒
]],  

𝑁3[𝜑3(𝜒, 𝜏; 𝑞)] = 𝑆[𝜑3(𝜒, 𝜏; 𝑞)] − 𝜑3(𝜒, 𝜏; 0) − 𝑠 [𝑆 [−(𝜑3(𝜒, 𝜏; 𝑞))
𝜒𝜒𝜒

+

3𝜑1(𝜒, 𝜏; 𝑞)(𝜑3(𝜒, 𝜏; 𝑞))
𝜒
]].                                                        (20)                                                                                           

and thus 

ℛ1,𝑚(�⃗⃗� 𝑚−1) = 𝑆[𝑈𝑚−1] − (1 − 𝑋𝑚)𝑈0 − 𝑠 [𝑆 [
1

2
(𝑈𝑚−1)𝜒𝜒𝜒 −

3(∑ 𝑈𝑛(𝑈𝑚−1−𝑛)𝜒
𝑚−1
𝑛=0 ) + 3(∑ 𝑉𝑛𝑊𝑚−1−𝑛

𝑚−1
𝑛=0 )𝜒]],  

ℛ2,𝑚(�⃗� 𝑚−1) = 𝑆[𝑉𝑚−1] − (1 − 𝑋𝑚)𝑉0 − 𝑠 [𝑆[−(𝑉𝑚−1)𝜒𝜒𝜒 +

3(∑ 𝑈𝑛(𝑉𝑚−1−𝑛)𝜒
𝑚−1
𝑛=0 )]],  

ℛ3,𝑚(�⃗⃗⃗� 
𝑚−1) = 𝑆[𝑊𝑚−1] − (1 − 𝑋𝑚)𝑊0 − 𝑠 [𝑆[−(𝑊𝑚−1)𝜒𝜒𝜒 +

3(∑ 𝑈𝑛(𝑊𝑚−1−𝑛)𝜒
𝑚−1
𝑛=0 )]].                             (21) 

the mth-order deformation equation are given by 

𝑆[𝑈𝑚(𝜒, 𝜏) − 𝑋𝑚𝑈𝑚−1(𝜒, 𝜏)] = ℏℛ1,𝑚(�⃗⃗� 𝑚−1),  

𝑆[𝑉𝑚(𝜒, 𝜏) − 𝑋𝑚𝑉𝑚−1(𝜒, 𝜏)] = ℏℛ2,𝑚(�⃗� 𝑚−1), 

𝑆[𝑊𝑚(𝜒, 𝜏) − 𝑋𝑚𝑊𝑚−1(𝜒, 𝜏)] = ℏℛ3,𝑚(�⃗⃗⃗� 
𝑚−1).       (22) 

applying the inverse sumudu transform, we have 
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𝑈𝑚(𝜒, 𝜏) = 𝑋𝑚𝑈𝑚−1(𝜒, 𝜏) + ℏ𝑆−1[ℛ1,𝑚(�⃗⃗� 𝑚−1)], 

𝑉𝑚(𝜒, 𝜏) = 𝑋𝑚𝑉𝑚−1(𝜒, 𝜏) + ℏ𝑆−1[ℛ2,𝑚(�⃗� 𝑚−1)], 

𝑊𝑚(𝜒, 𝜏) = 𝑋𝑚𝑊𝑚−1(𝜒, 𝜏) + ℏ𝑆−1[ℛ3,𝑚(�⃗⃗⃗� 
𝑚−1)].    (23) 

now, solving the system (23) to find 𝑈1(𝜒, 𝜏), 𝑉1(𝜒, 𝜏),𝑊1(𝜒, 𝜏), 𝑈2(𝜒, 𝜏), 𝑉2(𝜒, 𝜏) and 

𝑊2(𝜒, 𝜏) respectively, 𝑚 = 1, 2, 3, …., we get 

 ℛ1,1(�⃗⃗� 0) = 𝑆[𝑈0] − (1 − 0)𝑈0 − 𝑠 [𝑆 [
1

2
(𝑈0)𝜒𝜒𝜒 − 3(𝑈0(𝑈0)𝜒) + 3(𝑉0𝑊0)𝜒]], 

ℛ2,1(�⃗� 0) = 𝑆[𝑉0] − (1 − 0)𝑉0 − 𝑠 [𝑆[−(𝑉0)𝜒𝜒𝜒 + 3(𝑈0(𝑉0)𝜒)]], 

ℛ3,1(�⃗⃗⃗� 
0) = 𝑆[𝑊0] − (1 − 0)𝑊0 − 𝑠 [𝑆[−(𝑊0)𝜒𝜒𝜒 + 3(𝑈0(𝑊0)𝜒)]].               (24) 

thus 

𝑈1(𝜒, 𝜏) = ℏ𝑆−1 [𝑆[𝑈0] − 𝑈0 − 𝑠 [𝑆 [
1

2
(𝑈0)𝜒𝜒𝜒 − 3(𝑈0(𝑈0)𝜒) + 3(𝑉0𝑊0)𝜒]]], 

𝑉1(𝜒, 𝜏) = ℏ𝑆−1 [𝑆[𝑉0] − 𝑉0 − 𝑠 [𝑆[−(𝑉0)𝜒𝜒𝜒 + 3(𝑈0(𝑉0)𝜒)]]], 

𝑊1(𝜒, 𝜏) = ℏ𝑆−1 [𝑆[𝑊0] − 𝑊0 − 𝑠 [𝑆[−(𝑊0)𝜒𝜒𝜒 + 3(𝑈0(𝑊0)𝜒)]]].                    (25) 

ℛ1,2(�⃗⃗� 1) = 𝑆[𝑈1] − (1 − 1)𝑈0 − 𝑠 [𝑆 [
1

2
(𝑈1)𝜒𝜒𝜒 − 3(𝑈0(𝑈1)𝜒 + 𝑈1(𝑈0)𝜒) +

3(𝑉0𝑊1 + 𝑉1𝑊0)𝜒]], 

ℛ2,2(�⃗� 1) = 𝑆[𝑉1] − (1 − 1)𝑉0 − 𝑠 [𝑆[−(𝑉1)𝜒𝜒𝜒 + 3(𝑈0(𝑉1)𝜒 + 𝑈1(𝑉0)𝜒)]], 

ℛ3,2(�⃗⃗⃗� 
1) = 𝑆[𝑊1] − (1 − 1)𝑊0 − 𝑠 [𝑆[−(𝑊1)𝜒𝜒𝜒 + 3(𝑈0(𝑊1)𝜒 + 𝑈1(𝑊0)𝜒)]]. 

thus  

𝑈2(𝜒, 𝜏) = 𝑈1(𝜒, 𝜏) + ℏ𝑆−1 [𝑆[𝑈1] − 𝑠 [𝑆 [
1

2
(𝑈1)𝜒𝜒𝜒 − 3(𝑈0(𝑈1)𝜒 + 𝑈1(𝑈0)𝜒) +

3(𝑉0𝑊1 + 𝑉1𝑊0)𝜒]]], 

𝑉2(𝜒, 𝜏) = 𝑉1(𝜒, 𝜏) + ℏ𝑆−1 [𝑆[𝑉1] − 𝑠 [𝑆[−(𝑉1)𝜒𝜒𝜒 + 3(𝑈0(𝑉1)𝜒 + 𝑈1(𝑉0)𝜒)]]], 

𝑊2(𝜒, 𝜏) = 𝑊1(𝜒, 𝜏) + ℏ𝑆−1 [𝑆[𝑊1] − 𝑠 [𝑆[−(𝑊1)𝜒𝜒𝜒 + 3(𝑈0(𝑊1)𝜒 + 𝑈1(𝑊0)𝜒)]]].    

(26) 

Now if ℏ = −1 then the solution in equations (25) and (26) give same rustle as the SDM 

and SHPM 

 

4. Application  

All numerical results were obtained using Mathematica software, utilizing all of the 

above approaches. This is  due to its ease of use and ability to manipulate data. 
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The approximate solution by SHAM of order-three to system (1) with an initial condition 

in equation (3) and an exact solution in equation (2) can be seen below: 

𝑈(𝜒, 𝜏) =
1

3
(𝛾 − 2𝑎2) + 𝜏2(−4𝛾2ℏ2𝑎4sech4(𝑎𝜒) + 2𝛾2ℏ2𝑎4cosh (2𝑎𝑥)sech4(𝑎𝜒))

+ 2𝑎2tanh2(𝑎𝑥) + 𝜏(−8𝛾ℏ𝑎3sech2(𝑎𝜒)tanh (𝑎𝑥)
− 4𝛾ℏ2𝑎3sech2(𝑎𝜒)tanh (𝑎𝑥)) 

𝑉(𝜒, 𝜏) = −
4𝑐0𝑎

2(𝛾 + 𝑎2)

3𝑐1
2

+ 𝜏 (−
8𝛾ℏ𝑎3(𝛾 + 𝑎2)sech2(𝑎𝜒)

3𝑐1
−

4𝛾ℏ2𝑎3(𝛾 + 𝑎2)sech2(𝑎𝜒)

3𝑐1
)

+
4𝑎2(𝛾 + 𝑎2)tanh (𝑎𝑥)

3𝑐1
−

4𝛾2ℏ2𝑎4(𝛾 + 𝑎2)𝜏2sech2(𝑎𝜒)tanh (𝑎𝑥)

3𝑐1
 

𝑊(𝜒, 𝜏) = 𝑐0 + 𝜏(−2𝛾𝑐1ℏ𝑎sech2(𝑎𝜒) − 𝛾𝑐1ℏ
2𝑎sech2(𝑎𝜒)) + 𝑐1tanh (𝑎𝑥)

− 𝛾2𝑐1ℏ
2𝑎2𝜏2sech2(𝑎𝜒)tanh (𝑎𝑥) 

Tables 1-3 show the difference in absolute error between the exact and approximate 

solutions by SHAM and STM for 𝑈(𝜒, 𝜏), 𝑉(𝜒, 𝜏), and 𝑊(𝜒, 𝜏) respectively, (when we 

plot the ℏ -curves we can find that the valid region for ℏ = -0.99 for 𝑈(𝜒, 𝜏), ℏ = -0.909 

for 𝑉(𝜒, 𝜏) 𝑎𝑛𝑑 𝑊(𝜒, 𝜏)). From these tables, there is a clear change in the results that 

shows the accuracy of the solution by SHAM, when 𝜒 =  1, 𝑎 = 0.1, 𝑐0 = 1.5, 𝑐1 =
0.1 . 𝛾 = 1.5, and 𝜏 ∈ [ 0,1 ]. 
 

TABLE  1: absolute error of STM and SHAM with Exact for 𝑈(𝜒, 𝜏)  
(𝜒, 𝜏) |𝑆𝑇𝑀 − 𝐸𝑥𝑎𝑐𝑡| |SHAM − 𝐸𝑥𝑎𝑐𝑡| 

(1,0) 0 0 

(1,0.1) 4.4325 × 10−6 7.38259 × 10−8 

(1,0.2) 1.77249 × 10−5 2.06141 × 10−7 

(1,0.3) 3.98586 × 10−5 2.70208 × 10−7 

(1,0.4) 7.08013 × 10−5 1.25332 × 10−7 

(1,0.5) 1.10507 × 10−4 3.82625 × 10−7 

(1,0.6) 1.58917 × 10−4 1.42068 × 10−6 

(1,0.7) 2.15961 × 10−4 3.16812 × 10−6 

(1,0.8) 2.81555 × 10−4 5.81588 × 10−6 

(1,0.9) 3.55606 × 10−4 9.56585 × 10−6 

(1,1) 4.3801 × 10−4 1.46302 × 10−5 

Least Square 
 Error 

4.88622 × 10−8 3.51711 × 10−11 

 

TABLE  2: absolute error of STM and SHAM with Exact for 𝑉(𝜒, 𝜏)  
(𝜒, 𝜏) |𝑆𝑇𝑀 − 𝐸𝑥𝑎𝑐𝑡| |SHAM − 𝐸𝑥𝑎𝑐𝑡| 
(1,0) 0 0 

(1,0.1) 4.45179 × 10−6 2.37668 × 10−5 
(1,0.2) 1.86676 × 10−5 4.46848 × 10−5 
(1,0.3) 4.39241 × 10−5 6.14754 × 10−5 
(1,0.4) 8.14779 × 10−5 7.28797 × 10−5 
(1,0.5) 1.32563 × 10−4 7.76613 × 10−5 
(1,0.6) 1.9839 × 10−4 7.46082 × 10−5 
(1,0.7) 2.80143 × 10−4 6.25344 × 10−5 
(1,0.8) 3.78977 × 10−4 4.02817 × 10−5 
(1,0.9) 4.96018 × 10−4 6.72184 × 10−6 
(1,1) 6.32363 × 10−4 3.92423 × 10−5 

Least Square  9.33888 × 10−8 3.03682 × 10−9 
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TABLE  3: absolute error of STM and SHAM with Exact for 𝑊(𝜒, 𝜏)  
(𝜒, 𝜏) |𝑆𝑇𝑀 − 𝐸𝑥𝑎𝑐𝑡| |SHAM − 𝐸𝑥𝑎𝑐𝑡| 

(1,0) 0 0 

(1,0.1) 2.21115 × 10−6 1.18047 × 10−5 

(1,0.2) 9.27198 × 10−6 2.21945 × 10−5 

(1,0.3) 2.18166 × 10−5 3.05341 × 10−5 

(1,0.4) 4.04692 × 10−5 3.61985 × 10−5 

(1,0.5) 6.58427 × 10−5 3.85735 × 10−5 

(1,0.6) 9.85383 × 10−5 3.70571 × 10−5 

(1,0.7) 1.39144 × 10−4 3.10601 × 10−5 

(1,0.8) 1.88234 × 10−4 2.00075 × 10−5 

(1,0.9) 2.46367 × 10−4 3.33866 × 10−6 

(1,1) 3.14087 × 10−4 1.94912 × 10−5 

Least Square  
Error 

2.3039 × 10−8 7.49183 × 10−10 

The curves in Figure 1 and Figure 2 show that how the SHAM curves are close to the 

solitary solution curve when χ ∈ [−10, 10] and τ ∈ [0,10], at τ =2. 

Where Figure 3 plot the ℏ -curves when χ=0.2,τ=0.01,-5≤ℏ≤0.5. 

  
(𝑎)  𝑈(𝜒, 𝜏) (𝑏)  𝑉(𝜒, 𝜏) 

 
(𝑐)  𝑊(𝜒, 𝜏) 

Figure 1 Curves of STM with exact for 𝜒𝜖[−10,10], 𝜏𝜖[0,10] 
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(𝑎)  𝑈(𝜒, 𝜏) (𝑏)  𝑉(𝜒, 𝜏) 

 
(𝑐)  𝑊(𝜒, 𝜏) 

Figure 2 Curves of SHAM with exact for 𝜒𝜖[−10,10], 𝜏𝜖[0,10] 

  
(𝑎)  𝑈(𝜒, 𝜏) (𝑏)  𝑉(𝜒, 𝜏) 

 
(𝑐)  𝑊(𝜒, 𝜏) 

Figure 3 the ℏ -curves when (𝜒, 𝜏) = (0.2,0.01),−5 ≤ ℏ ≤ 0.5 

 

5. Conclusion 

The sumudu homotopy analysis method is used in this study to solve generalized Hirota-

Satsuma coupled KdV systems under particular beginning conditions. The findings 

demonstrate that the sumudu homotopy analysis method is a more potent and effective 

strategy for locating an approximative solution for generalized Hirota-Satsuma coupled 

KdV equations than the sumudu transform method. When nth approximation numerical 

results are compared to the known precise solution, the results demonstrate good 

approximation to the true solution of the equations with only three iterations. Obviously, 

for ℏ=-1 theobtained solution are as the same SHPM and SADM, while if we plot the 
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curve ℏ we find the best value of ℏ are ℏ = -0.99 for U(χ,τ), ℏ = -0.909 for V(χ,τ), and 

W(χ,τ). Also, the tables and figure   show the differences between the methods . 
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