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Abstract 

This study examines the way individuals in the United Arab Emirates handled their 

finances during the COVID-19 pandemic, with a focus on optimizing linear regression 

models utilizing Lasso and Ridge Regression methods. Using the World Bank's enormous 

Global Findex dataset, we navigated the obstacles of multicollinearity and missing 

values. Our investigation showed that specific economic indicators and demographic 

characteristics, including gender and educational attainment, are crucial in affecting 

financial choices during crises. Our study carefully analyzed the performance of Lasso 

and Ridge Regression in the context of the Global Findex dataset. Ridge Regression was 

outperformed by Lasso, which is renowned for its feature selection and complexity 

reduction abilities. This research provides a comprehensive knowledge of the way 

advanced regression approaches might improve predictive modeling in such settings, 

shedding light on the complex dynamics of financial activity during a worldwide crisis.  
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1. INTRODUCTION 

In multiple regression analysis, the presence of multicollinearity, which indicates the 

linear relationships among independent variables, can pose challenges in interpreting the 

results. However, knowledgeable researchers can overcome these challenges by 

employing various techniques to investigate the contributions of predictors to the 

regression model and their interrelationships. These techniques include correlation 

coefficients, beta weights, structure coefficients, all possible subsets regression, 

commonality coefficients, dominance weights, and relative importance weights. By 

utilizing multiple indices, researchers can gain a comprehensive understanding of the 

effects of predictors in the regression model, as well as their relationships with each other. 

Statistical software can provide support for implementing these analyses. 
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Multiple regression analysis is widely used in various fields such as business 

administration, economics, engineering, and the social, health, and biological sciences. It 

aims to model the relationship between a dependent variable and multiple independent 

variables. However, multicollinearity can arise when the independent variables exhibit 

linear relationships among themselves. Collinearity occurs when two variables closely 

resemble perfect linear combinations of each other. Multicollinearity occurs when the 

regression model includes several variables that are significantly correlated not only with 

the dependent variable but also with each other. 

Multicollinearity can lead to skewed or misleading results when attempting to determine 

the optimal utilization of each factor in predicting or understanding the response variable 

in a statistical model. It can also result in wider confidence intervals and less reliable 

likelihood values for the predictors, rendering the findings from a model with 

multicollinearity less trustworthy. Additionally, multicollinearity increases the standard 

errors of each coefficient in the model, altering the analysis results and potentially 

causing previously significant variables to become statistically insignificant. The 

increased variance of the regression coefficients due to multicollinearity further 

complicates the interpretation of the coefficients. Numerous studies have highlighted the 

problems associated with multicollinearity in regression models, including biased and 

uneven standard errors and impractical explanations of the results. To address these 

issues, researchers are encouraged to employ advanced regression procedures such as 

principal components regression, weighted regression, and ridge regression methods to 

detect multicollinearity.  

The choice between Lasso and Ridge regression depends on the specific characteristics of 

the problem and the desired properties of the model. Lasso performs well when there are 

numerous features, but only a small fraction of them is truly important. In contrast, ridge 

regression is effective in the presence of multicollinearity and when all features impact 

the model's performance. Both approaches offer robust frameworks for enhancing model 

performance and interpretability, enabling researchers to design reliable and efficient 

regression models for a wide range of applications. By carefully considering the 

advantages and disadvantages of each technique, researchers can select the most 

appropriate regularization method for their specific regression analysis. 

So, in summary, Multicollinearity in multiple regression analysis poses challenges in 

interpretation. Researchers can overcome this by using techniques like correlation 

coefficients, beta weights, and structure coefficients to understand predictor contributions 

and relationships. Multicollinearity can lead to misleading results, wider confidence 

intervals, and less reliable likelihood values. It increases standard errors, potentially 

rendering previously significant variables insignificant. Advanced regression procedures 

like principal components regression, weighted regression, and ridge regression help 

address multicollinearity. 

Lasso and Ridge regression are effective strategies to handle multicollinearity and prevent 

overfitting. Lasso (L1 regularization) promotes simpler models with fewer parameters, 

useful for multicollinearity and automated model selection. Ridge regression (L2 

regularization) reduces bias and variability of estimates, particularly suitable for 

multicollinearity. Choosing between Lasso and Ridge regression depends on problem 

characteristics and desired model properties. Lasso is suited for many features with few 

important ones, while ridge regression is effective when all features impact performance. 

These techniques enhance model performance and interpretability, enabling researchers to 

design reliable regression models for various applications. 

The rest of this article is organized as follows. Section 2 presents a brief overview of the 

existing literature. The data and methodology are outlined in Section 3. The data analysis 

of both Ridge and Lasso Regression models is discussed in Section 4, and the final 

section concludes by summarizing the fundamental results 
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2. LITERATURE  

Regularization techniques, such as ridge, lasso, and their combination elastic net, are 

widely used in the data science and machine learning fields to improve upon the standard 

linear regression models. This review analyzes the use of traditional least squares 

methods, regularization techniques, and other hybrid methods to highlight regularization 

techniques’ usage cases, capabilities, and limitations. 

Ordinary least squares (OLS) is an old and commonly used technique in regression. 

However, according to (Kan et al., 2019) research, OLS performs worse when compared 

to other regularization techniques, and the research suggests implementing simple 

regularization models to create more effective risk adjustment models. Nevertheless, least 

square regression methods can aid regularization techniques by processing data and 

identifying relevant factors. For example, using PLS in a study on the quality of edible 

oils improved the marginal prediction errors and helped address collinearity in the model 

(Gilbraith et al., 2021). 

(Schmidt, 2005) suggests that due to the need for precise prediction models with 

understandable or minimal representations, L1 regularization, when combined with the 

Least Squares objective function, has attracted substantial interest across a variety of 

areas. Techniques for parameter estimation include optimizing loss functions that are 

subject to the L1 penalty, choosing appropriate regularization parameter values, and 

dealing with orthogonal design matrix optimization. The study by (Schmidt et al., 2007) 

is supported by the paper. Due to its non-differentiability, L1 regularization presents 

optimization issues; however, they analyzed state-of-the-art optimization techniques to 

handle this problem. Numerous comparisons reveal that these methods regularly rank 

highly for efficiency and convergence speed as measured by the number of function 

evaluations needed. The comparison of optimization techniques to handle the issues 

brought on by the non-differentiability of L1 regularization is probably covered in both 

sources. 

Regression and classification approaches are used in supervised learning, where the main 

objectives are to reduce empirical risk and, through regularization, address overfitting. 

New regularization techniques are proposed by (Shafieezadeh-Abadeh et al., 2019) based 

on notions for distributionally resilient optimization. On the other hand, despite issues 

with model divergence during training, Generative Adversarial Networks (GANs) have 

attracted substantial attention for applications like creating synthetic samples. Recent 

studies, such as (Shafieezadeh-Abadeh  et al., 2019; Lee & Seok, 2020) concentrate on 

creating regularization methods to stabilize GAN training. The performance and stability 

of GAN models have improved as a result of these developments. 

Regression models' stability and clarity can be negatively impacted by multicollinearity 

or the strong correlation across predictor variables. Ridge regression is particularly 

effective in addressing multicollinearity problems. Ridge regression mitigates the effects 

of multicollinearity and regulates the estimated coefficients by introducing a degree of 

bias to the regression estimates of the regression model (Schreiber-Gregory, 2018). He 

discussed the importance of Ridge regression in controlling multicollinearity and 

provided insightful explanations of its function in enhancing the accuracy of regression 

analysis. In addition, (Mohammadi, 2020) suggested a fresh approach to determining 

multicollinearity's negative effects. The significance levels of the coefficient estimations 

from the generalized ridge regression and traditional least squares are compared using 

this method. It classifies the level that results in false statistical inference as detrimental 

multicollinearity. Even with tiny sample sizes, the proposed test exhibits significant 

power and is effective in locating harmful multicollinearity. Considering the combined 

results, it is important to recognize and address multicollinearity in regression analysis, 

and Ridge Regression, and the suggested method may be helpful in reducing its effects. 
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(Melkumova & Shatskikh, 2017) performed different regression techniques on the wine 

quality data to compare the residual sum of squares of these techniques. The results 

showed that the smallest residual sum of squares in the training data was obtained by 

ordinary least square regression. However, in the testing data, the LASSO and ridge 

regression had a smaller residual sum of squares than the ordinary least square regression. 

Additionally, the statistical analysis performed on the wine quality data showed that as 

lambda increases, both ridge and LASSO shrink to zero, and thus reduce the variance. 

However, unlike ridge regression, the LASSO regression is easier to interpret as it carries 

out a variable selection, which produces zero coefficient estimates for some variables.  

(Sirimongkolkasem & Drikvandi, 2019) investigated regularized methods, including 

Lasso, Elastic Net, and Ridge regression, for analyzing high-dimensional data. It explores 

the effects of data correlation, covariate location, and effect size on prediction, parameter 

estimation, and variable selection. The study finds that correlated data improves the 

performance of common regularized methods, with Elastic Net showing better variable 

selection in the presence of correlation. The de-biased Lasso performs well in low-

dimensional data but faces issues like multicollinearity and multiple hypothesis testing. 

(Gao et al., 2020) focused on high-dimensional regression modeling and compared Ridge 

regression and Lasso regression on financial data. Lasso regression is found to be 

effective in big data modeling and coefficient compression, outperforming Ridge 

regression in terms of cross-validation mean square error and interpretability of the 

equations. The study uses fiscal revenue-related predictors and emphasizes the 

importance of fiscal revenue in evaluating China's economic development. 

Regression models and regularization techniques are essential in statistical learning and 

have been studied in different contexts. (Salehi et al., 2019) introduced regularized 

logistic regression (RLR), which incorporates a convex regularizer to encourage 

structured parameter vectors. They provided a detailed analysis of RLR's performance, 

including explicit expressions for various metrics and optimization of the regularized 

parameter. On the other hand, the optimal ridge penalty for real-world high-dimensional 

data can be zero or negative due to the implicit ridge regularization is a paper that 

challenges the conventional wisdom of strong regularization for preventing overfitting in 

large models. It focuses on underdetermined linear regression situations, where predictors 

outnumber observations. Surprisingly, the paper shows that explicit positive ridge 

penalties may not improve the model and suggests that negative ridge penalties can be 

optimal in such cases. It highlights how low-variance directions implicitly contribute to 

regularization in high-dimensional data. By combining these perspectives, we gain a 

more comprehensive understanding of regularization in regression models. While (Salehi 

et al., 2019) emphasized the benefits of regularization in logistic regression, particularly 

in the high-dimensional regime, (Kobak et al., 2020) provided insights into cases where 

excessive regularization may hinder model performance, urging us to consider the 

variance and structure of predictors. 

Expanding on this topic, (Sarma and Barma, 2019) proposed a method using LASSO 

regression to perform variable selection to analyze emotions ignoring the fact that 

emotions are extremely individualized. The extracted relevant features using the power 

spectral density from signals were subjected to LASSO to pick the best feature set for 

every subject. The reduced features acquired a high accuracy classification, which proves 

the efficiency of the proposed technique. Similarly, Yang et al., (2022) proposed a 

technique to estimate the parameters of the predistortion model by implementing LASSO 

regression. This study incorporated LASSO regression for the same reason as (Sarma and 

Barma, 2019), because of its ability to extract significant variables to reduce the 

complexity of the model by shrinking some variables’ coefficients to zero. This method 

proved its success as it resulted in a 78% reduction of the model coefficients, which 

leaves only 28 out of 125.  
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Furthermore, a study conducted by (Neba et al., 2023) explored the utilization of 

regularized generalized linear models (GLMs), including Lasso regression, Ridge 

regression, and Elastic Net regression, for credit card fraud detection. The study 

compared the performance of these techniques on a dataset of credit card transactions and 

found that Ridge regression achieved the highest accuracy of 98%, followed by Lasso 

regression (93.2%) and Elastic Net (93.1%). This research demonstrated the effectiveness 

of regularized GLMs as valuable tools for fraud detection in high-dimensional data. 

(Tkachenko et al., 2021) simulated the average weight of Roman snails, focusing on two 

models, ridge and LASSO regression. It was proved that the ridge model showed the best 

results in modeling the average weight of Roman snails because it considered all 

quantitative and qualitative factors affecting the snails, which led to a significant error 

reduction, unlike in the LASSO model.  

Additionally, a study on optimizing regularization in DRT illustrates that lasso helps 

determine relevant peaks in the graphical analysis (Saccoccio et al., 2014). Lasso can also 

assist variation regularization, a technique effective in image diagnosis and retaining 

critical structural information, with results showing that a L1 and total variation Quasi-

Network Flow model was promising in creating desirable road profiles and reducing the 

waviness of vertical road alignment in case studies on existing roads (Iannantuono et al., 

2023). Additionally, (Gilbraith et al., 2021) find that a lasso model performs slightly 

better than a ridge and is more favorable in the elastic net model than a ridge. (Kan et al., 

2019) found similar results as lasso regression performed the best when predicting risk 

across high and low levels. Despite the Lasso winning favor, studies demonstrated that 

the Ridge is an advantageous graphical smoother and, in some instances, performs 

comparably to the Lasso. Ultimately, using both L1 and L2 regularization techniques 

significantly improves the model, and combining them in elastic net regularization 

enhances models by acquiring more accurate and insightful results (Saccoccio et al., 

2014; Gilbraith et al., 2021). 

Moreover, et al., (Kumar et al., 2019) investigated the relationship between adaptive 

Lasso and generalized Ridge estimators. Their research revealed that, in certain 

situations, the estimators derived from both procedures were identical, indicating a 

common underlying process. This study shed light on the practical applications of 

adaptive Lasso and generalized Ridge estimators in linear regression analysis while 

providing insights into the theoretical connections between them. 

Machine learning (ML) is a technology that gives systems the ability to learn on their 

own through real-world interactions and generalizing from examples without explicit 

programming, as in the case of rule-based programming. It plays a key role in a wide 

range of critical applications. In machine learning, linear regression (LR) is a 

fundamental technique used to obtain a linear trend. However, linear regression is just 

one facet of comprehensive statistical and machine-learning algorithms. Review on 

Linear Regression Comprehensive in Machine Learning is a paper that highlights linear 

regression as one of the most common algorithms used to find linear relationships 

between predictors, including simple regression and multiple regression (MLR) (Maulud 

and Abdulazeez, 2020). Researchers have extensively studied linear and polynomial 

regression to optimize prediction and precision, comparing their performance. Notably, 

the emphasis lies on evaluating model efficiency by correlating it with the actual values 

obtained for the explanatory variables. Another study further adds to the discussion by 

noting that Support Vector Machines (SVMs) provide advanced features such as high 

accuracy and predictability in Stock Market Prediction using Linear Regression and 

Support Vector Machines, making them a valuable addition to the field (Gururaj et al., 

2019). In summary, these combined papers provide a comprehensive overview of linear 

regression's importance in machine learning, its variations, and the ongoing research 

focused on optimizing its performance. 
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Li, Y., et al., (2018) introduced a regularized graph neural network (RGNN) approach that 

considers the biological topology among different brain regions in 

Electroencephalography (EEG) signals. It models inter-channel relations using an 

adjacency matrix inspired by neuroscience theories and proposes two regularizes to 

handle cross-subject EEG variations and noisy labels. The experiments demonstrate the 

superior performance of the RGNN model compared to state-of-the-art models. (Zhong et 

al., 2022) presented a novel regression model called graph regularized sparse linear 

regression (GRSLR) for EEG emotion recognition. GRSLR extends conventional linear 

regression by incorporating graph regularization and sparse regularization to learn a 

transform matrix that preserves the intrinsic manifold of the data samples. The proposed 

algorithm is evaluated on two databases, SEED and RCLS, showing superiority over 

classic baselines (Li et al., 2018). Additionally, the authors make the RCLS database 

publicly available for further research. 

By combining these papers, we introduce a comprehensive framework for EEG-based 

emotion recognition that leverages the topology of EEG channels and incorporates 

regularization techniques. The proposed methods, RGNN and GRSLR, highlight the 

importance of capturing inter-channel relations and preserving intrinsic data structures. 

The experiments conducted on multiple datasets validate the effectiveness of both 

approaches, demonstrating improved performance compared to existing methods. The 

availability of the RCLS database further encourages future research in the field of 

emotion recognition. 

Recently, new methods have been developed to capitalize on penalization capabilities and 

improve outcomes by combining them with other machine learning models. For instance, 

researchers developed a ranking-based regularization method when dealing with critical 

rare classes. The penalization techniques work in conjunction with neural networks to 

reduce the imbalance and bias of the data in machine learning associated with critical rare 

classes by increasing caution within the network in labeling a false positive. The 

approach consistently improved the models and outperformed other techniques 

implemented (Kiarash et al., 2023). 

The above-mentioned studies collectively emphasize the importance and effectiveness of 

regularized regression methods such as Ridge regression and Lasso regression in 

addressing multicollinearity, enhancing prediction precision, performing variable 

selection, and improving risk assessment and fraud detection models. They also provide 

insights into the practical applications and theoretical connections between these methods 

in various fields of research. 

Although the researched literature emphasizes the advantages and efficacy of regularized 

regression techniques like Ridge regression and Lasso regression, it is crucial to 

recognize their limits and consider possible areas for additional study. Regularization 

techniques are significant and effective in varying fields. Current literature investigates 

utilizing regularization in machine learning, specifically when dealing with high-

dimensional data. Regardless, fields such as clinical medicine rarely apply penalization in 

medical analyses and the body of work regarding common business concepts, such as the 

critical rare positive, is still limited (Friedrich et al., 2023; Kiarash et al., 2023). Hence, 

our research explores regularization techniques to provide a comprehensive grasp of their 

potential in linear regression models. 

The assumption of linearity between the predictors and the response variable is a 

drawback of regularized regression techniques. despite the fact that these techniques have 

frequently been successful, they could not work as well when the connection between the 

predictors and the response is remarkably nonlinear. To overcome this constraint, future 

studies may examine the use of nonlinear transformations or the use of alternative 

machine-learning approaches. 
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The effect of the regularization parameter choice on the effectiveness of the models 

should also be considered. Results can be strongly impacted by the regularization 

parameter selection, such as the alpha value in Ridge regression or the lambda value in 

Lasso regression. It would be helpful to conduct more research on techniques for 

automatically or data-driven choosing the regularization value. 

Additionally, the majority of the research that was examined used regularized regression 

techniques in certain fields, such as banking, fraud detection, and risk assessment. Even 

though these applications offer insightful information, more studies should examine how 

well these techniques work with other domains and datasets. Understanding how 

regularized regression techniques may be applied across a variety of areas will help them 

become more widely used and practicable. We may better comprehend regularized 

regression methods and their wider application in other disciplines by resolving these 

constraints and examining the possible topics for future study. 

 

3. METHODOLOGY 

The World Bank provides the Global Findex dataset, which includes precise information 

on the UAE's degree of financial availability and accessibility through surveying one 

thousand adults' monetary behavior and financial decisions. The dataset contains, on an 

individualistic level, eighty-four econometric and demographic variables. Additionally, 

data weighing is employed to ensure a more accurate representation of the UAE's 

economy by accounting for household size, data collection errors, and several 

demographic factors (United Arab Emirates, 2023). Ultimately, the dataset provides an 

extensive account of the financial services used in the COVID-19 pandemic. 

The original dataset contained 84 variables and 1000 observations. However, the dataset 

was very messy and had a lot of missing values, 36.6% of the data was missing. In order 

to clean the dataset, some variables were eliminated to facilitate the process of cleaning. 

The dataset ended up with 18 variables out of 84. R software was used to clean the 

dataset.  

We fit the data to a traditional linear regression model using the “lm” function in R. The 

model analyzes the relationship between the dependent variables (e.g., financial behavior 

or decisions) and the independent variables (e.g., demographic factors). Even though the 

model might suffer from overfitting and other difficulties when dealing with the possible 

presence of non-linear relationships in the data, the least-squares model functions as a 

starting point to identify the relationships in the dataset. 

Lasso and Ridge Regression are usually applied when multicollinearity is present. The 

function glmnet()from the glmnet package is used to fit the lasso and ridge regression. 

The value of alpha determines whether we are fitting ridge or lasso regression. Alpha 

equals to zero corresponds to using ridge regression, while setting alpha to one 

corresponds to implementing lasso regression.  

For the selection of the appropriate regularization parameters, we employ cross-

validation, where the model is trained using the training dataset. Then, the model’s 

performance is assessed, and the best regularization parameter is selected using the 

validation data subset and established performance metrics. 

The regression model’s prediction was compared with the actual data to evaluate its 

performance. The comparison showed that the model predictions are very close to the 

actual response values. However, some outliers were spotted. The model overestimated 

and underestimated some values. Similarly, when comparing the lasso model with the 

actual data, only a few data points were underestimated or overestimated. 
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4. DATA ANALYSIS  

In this section, we explore the interpretative side of our study and explain how Ridge and 

Lasso Regression performed on our massive dataset. Here, we analyze the outcomes of 

our results, giving a detailed analysis of the influence of predictor variables, the effect of 

regularization, and the performance differences between the two regression techniques. 

We aim to methodically analyzing the coefficient estimates, prioritizing factors according 

to their importance, and illuminating the different coefficient trajectories as regularization 

increases. Our goal is to identify key information that helps with making informed 

choices when using predictive modeling. Furthermore, the prediction accuracy, residual 

pattern behavior, and a comparison of the performance of the Ridge and Lasso Regression 

models will be examined. 

We started the data analysis by firstly, the data cleaning process was performed, secondly, 

the data was then divided into two sets: a training set with 80% and a testing set with 

20%. 

4.1. Ridge Trace Plot 

To investigate the influence of altering lambda values on model performance, ridge 

regression was used. The ideal lambda (λ) that reduced the mean squared error was 

determined via cross-validation. We wanted to see how different predictor factors affected 

the response variable 'wgt' in the Ridge Regression study. We started by looking at the 

Ridge Trace Plot, which shows how the coefficients vary when the penalty parameter 

lambda changes. The graph is shown in Figure 1. The ideal lambda for minimizing cross-

validation error is represented as the lowest point on the curve, specifically at log lambda 

value 0.09132721. This point represents a significant crossroads in our study, denoting 

the time at which the regularization's favorable influence on the model's bias-variance 

trade-off is greatest. The optimum lambda effectively fine-tunes the influence of the 

coefficients, preventing them from exploding uncontrolled or being too limited. 

 

Figure 1: Ridge Trace Plot 

4.2. Estimated Coefficients and Absolute Coefficient Values 

The magnitudes of the coefficients were calculated and approximated. The absolute 

coefficient values of the variables were used to rank them. The computed coefficients 

denote the correlations between predictor variables and responder variables (wgt). A 

positive association is shown by positive coefficients, whereas a negative relationship is 

indicated by negative coefficients. The size of these coefficients indicates the extent to 

which they impact the response variable. 
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The absolute coefficient values were critical in the process of prioritizing predictors. The 

purpose of this ranking process is to reveal the most influential predictions in the ridge 

regression model. Specifically, the interpretation demonstrates the hierarchy of impact 

among predictors: “completed primary school or less” appears as the most significant, 

having a coefficient of 0.2829623736, closely followed by “completed secondary school” 

at 0.2196697912 in the subsequent position, “saved using an account at a financial 

institution” at 0.1946915575 in the third, “respondent is female” at 0.1883179959 in the 

fourth, and “has a mobile money account” at 0.1571741562 in the fifth. This order of 

significance underlines that predictors with bigger absolute coefficients have a stronger 

effect on the response variable, emphasizing their importance in determining model 

outputs. 

4.3. Ridge Coefficients Visualization 

The Ridge Regression Coefficients graphic shows how coefficients vary when lambda's 

logarithm changes. The vertical line at the logarithm of the optimal lambda value 

indicates that the coefficients have attained stability and that future lambda reductions 

will have no effect on them. 

Several essential conclusions may be obtained from the offered graphic depiction which 

is shown in Figure 2. To begin, the vertical demarcation along the x-axis at -2.3 

corresponds to the logarithm of the optimal lambda value for coefficient regularization. 

This line marks the precise location of the most advantageous lambda value on the 

logarithmic scale. This ideal lambda value is critical in determining the degree of 

regularization applied on the coefficients. A higher lambda value, in particular, produces a 

stronger regularization effect, causing a significant contraction of coefficients towards the 

zero point. Furthermore, the vertical direction of this line shows that the coefficients have 

reached a condition of equilibrium, indicating that future decreases in lambda are 

unimportant. 

 

Figure 2: Ridge Regression Coefficients Plot 

4.4. Lasso Regression Analysis 

Lasso regression, like ridge regression, was done with various lambda values, and cross-

validation assisted in determining the ideal lambda. The performance of the model was 

analyzed, and a residual plot was created to assess prediction precision. 

The Lasso cross-validation graphic, which is shown in Figure 3, illustrates the link 

between the logarithm of the regularization parameter (log λ) and the performance metric 

mean squared error (MSE). Moving down the x-axis, the MSE decreases gradually until it 

reaches a turning point as the log λ grows. The MSE reaches its smallest value on the 

curve at log = 0.01834977, indicating the best point for balancing the trade-off between 

model complexity and simplicity. Beyond this point, the MSE tends to increase, 

demonstrating the difficult balance between model complexity and simplicity. The slope 

of the chart indicates the model's sensitivity to changes in log, demonstrating the 
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possibility for major swings in the MSE with even little modifications. The lowest point 

on the curve acts as a guidepost for finding the ideal log, enabling a successful fit to the 

training data while minimizing overfitting risk. 

 

Figure 3: Model Performance Comparison Plot 

4.5. Model Performance Analysis 

Using a test dataset, we employed Ridge and Lasso regression models to predict 

conclusions. After making predictions using both models, we used the Root Mean 

Squared Error (RMSE) measure to assess how effectively they performed. The RMSE 

values generated indicate how effectively the Ridge and Lasso models predict the desired 

parameter on the test data. Lower RMSE values indicate that the model's predictions are 

more accurate since they are closer to the actual values. A graphical depiction is shown in 

Figure 4. Ridge had an RMSE of 0.5207947 while Lasso had an RMSE of 0.5150169. 

Because of the minor difference in these values, the Lasso model surpasses Ridge in 

producing predictions on this dataset. This suggests that Lasso's method of dealing with 

data features, such as selecting relevant components and lowering complexity, fits better 

here, which explains why its RMSE is smaller. However, it's important to note that the 

difference in RMSE between the two models is relatively small. This discovery 

demonstrates how regularization approaches such as Lasso may prevent overfitting and 

make models more realistic. 

 

Figure 4: Ridge Regression Residual Plot 

4.6. Residual Analysis 

The residual analysis of both the Ridge and Lasso regression models helped us to 

investigate further each model's prediction precision. The variations between the actual 

response variable values and the expected values produced by the models are referred to 

as residuals.  
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The residual graph for the Ridge regression model, shown in Figure 5, demonstrated that 

the bulk of predictions were close to the actual values. This meant that the model's 

predictions were mostly correct. A deeper look revealed an aptitude for minor 

overestimating before specific groupings of data clusters. Furthermore, certain places had 

higher variances, especially where strong negative residuals were recorded. These 

discrepancies showed that the Ridge model might be unable to capture particular trends in 

the data at times, resulting in larger errors in prediction. 

 

Figure 5: Lasso Regression Residual Plot 

The residual plot of the Lasso regression model, shown in Figure 6, revealed similar 

findings. The majority of forecasts were close to the actual values, demonstrating the 

model's general accuracy. Similarly, there was some inaccurate estimation before certain 

clusters of data points, and more substantial variations occurred in locations with 

significant negative residuals. This behavior revealed that the Lasso model and the Ridge 

model had similar prediction capabilities and issues. 

The occurrence of greater negative residuals in both situations may indicate that the 

models fail to accurately predict circumstances where the actual response values are 

significantly lower than anticipated. This might be due to the complexity of the data that 

the models are not successfully capturing, or it could be impacted by outliers impacting 

the projections. Despite both models performing well in terms of precision, the 

appearance of these patterns in the residual plots reveals areas where further model 

improvement or data pretreatment might possibly increase the precision of predictions. 

The Lasso Regression Prediction vs. Actual plot, illustrated in Figure 6, shows a highly 

comparable pattern to the Ridge model. The data points closely follow the diagonal line, 

demonstrating the Lasso regression model's ability to reliably project response numbers. 

Once again, a few points deviate slightly off the diagonal line, indicating slight 

differences between the model's predictions and the actual values. 

 

Figure 6: Lasso Regression Prediction vs. Actual Plot 
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4.7. Prediction vs. Actual Plot 

In the Prediction vs. Actual graphs, we directly compare the regression models' 

predictions with the actual response values. These charts provide a clear visual 

assessment of how well the models' predictions match the data. 

A significant number of the points in the Ridge Regression Prediction vs. Actual plot, 

depicted in Figure 7, observe a diagonal line with a slope of 1, reflecting the optimum 

case in which predictions precisely match the data in reality. This alignment shows that 

the Ridge regression model's predictions are quite close to the actual response values. It's 

worth noting, though, that a few points deviate slightly above and below the diagonal 

line. These deviations represent cases in which the model's predictions significantly 

exceed or underestimate the actual values. Despite these outliers, the general trend shows 

that the Ridge regression model gives reliable predictions, effectively capturing the 

underlying patterns in the data. 

 

Figure 7: Ridge Regression Prediction vs. Actual plot 

4.8. Coefficient Path Plot 

The Ridge and Lasso regression coefficient pathways show how a regression model's 

coefficients vary when the regularization parameter (λ) is raised. The regularization 

parameter governs how much shrinkage is performed to the coefficients. The coefficients 

shrink towards zero as λ rises. 

The coefficients start off big, but as λ grows, they shrink towards zero. Because some of 

the coefficients are finally set to zero, the Lasso regression is referred to as a sparse 

model. This indicates that the Lasso regression only considers a subset of the 

characteristics to be significant predictors. This implies that these characteristics are the 

most important weight predictors in the dataset. The Lasso regression model, presented in 

Figure 8, indicates that completed secondary school, completed primary school or less, 

the respondent is female, saved using an account at a financial institution, and bought 

something online using the Internet are the most influential predictors of weight, in that 

order are the most influential predictors of weight, in that order. 

 

Figure 8: Lasso Regression Coefficient Path Plot 
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On the other hand, in the Ridge coefficient path plot, presented in Figure 9. The 

coefficients start off large, but as λ grows, they shrink towards zero. The coefficients, 

however, never approach zero, which is why the Ridge regression is referred to as a non-

sparse model. This indicates that the Ridge regression incorporates all of the model's 

characteristics, but the coefficients are reduced to zero to decrease the variance of the 

estimations. The most influential predictors in the Ridge regression model are completed 

primary school or less, completed secondary school, saved using an account at a financial 

institution, the respondent is female, and has a mobile money account, in that order. 

 

Figure 9: Ridge Regression Coefficient Path Plot 

 

5. CONCLUSION 

As a whole, our research comprises a thorough investigation into how people in the 

United Arab Emirates handled their finances during the difficult time of the COVID-19 

outbreak. We sought to maximize our grasp of the complex dynamics influencing 

financial decisions in this precise setting by utilizing the effectiveness of linear regression 

models, particularly Lasso and Ridge Regression.  

We used a methodical approach to data preparation, variable selection, and the use of 

advanced regression techniques. We were successful in identifying substantial 

demographic influences on financial behavior during the epidemic, including education 

levels, gender, and particular financial variables. 

We discovered through model performance analysis that the Lasso and Ridge Regression 

models both produced insightful predictions of financial behavior. However, the slight 

advantage Lasso had in terms of RMSE revealed that this dataset was a good fit for its 

feature selection skills. This highlights the significance of using the appropriate modeling 

tools when analyzing financial behavior in the context of major economic shocks such as 

the COVID-19 crisis. 

Our examination of the residuals showed subtleties in the models' precision. Although 

both models had good overall performance, the existence of outliers and variances in 

particular locations revealed areas in which additional study or data pretreatment could 

improve predicted accuracy. These results shed light on the limitations of the model and 

suggest possible directions for development. 

In light of the aforementioned, this study advances our understanding of financial 

behavior under unusual conditions and emphasizes the significance of advanced modeling 

techniques, such as Lasso and Ridge Regression, in enhancing our comprehension of 

these intricate dynamics. 
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