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Abstract: 

The multinomial logit Liu estimator and the bias-corrected multinomial logit Liu estimator are 

proposed as solutions to mitigate the issue of multicollinearity in the multinomial logit model. 

Furthermore, the superior properties of these estimators in terms of mean squared error are 

presented when compared to both the maximum likelihood estimator and the ridge estimator. 

The optimal values of the biasing parameter for the proposed estimators 1are derived. A 

simulation is conducted to demonstrate the effectiveness of proposed estimators against ridge 

and traditional MLE using MSE and bias as performance criteria. The performance of 

estimators is judged by varying different factors such as the number of values, the number of 

predictors, levels of the response variable, and the multicollinearity levels. The result of the 

Monte-Carlo simulation and real data applications reveal that proposed estimators have lower 

MSE and bias compared to the MLE and ridge estimator. 

Keywords: Multinomial logit model, Multicollinearity, Liu estimator, Almost unbiased 

estimator. 

1. Introduction 

In regression models, as Frisch (1934) indicated, multicollinearity exists among predictors 

when they have high degree of linear dependence. For the multinomial logit model (MNL), the 

unbiased and efficient estimates of parameters are acquired by utilizing the traditional 

maximum likelihood estimator (MLE) under the condition that there is no multicollinearity. 

However, Abonazel and Farghali (2019) identified that the MLE behave unstable, consequently 

producing unbiased yet inefficient estimations in presence of multicollinearity. Therefore, the 

confidence intervals are wider, and due to this theoretically important variables become 

statistically insignificant in the testing of hypothesis (Qasim et al., 2020a). 

 In the context of regression models, to alleviate the dire impacts of multicollinearity biased 

estimators are utilized. In presence of multicollinearity, shrinkage estimators have been 

proposed to generate efficient estimators (Hoerl and Kennard, 1970; Liu, 1993, Saleh et al., 

2019, 2022). Of these, the Liu estimator by Liu (1993) and ridge regression by Hoerl and 

Kennard (1970), stand out as being broadly adopted techniques. Liu estimator and the ridge 

estimator are distinguished by the fact that the first-mentioned has a nonlinear while the other 

one has a linear relation with the shrinkage parameter. Thus, as recognized by Qasim et al. 

(2018), the Liu estimator has the superiority of being simple when selecting the value of biasing 
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parameter, which makes it a effective technique in real-world applications. In order to model 

high-dimensional data, Arashi et al. (2022) worked on the Liu regression following a random 

forest. The multicollinearity under linear predictors link for modeling longitudinal data was 

recently covered by Taavoni et al. (2023).   

For the Bernoulli response model, numerous researchers have proposed biased estimators to 

tackle the issue of multicollinearity. Schaefer et al., (1984) introduced the logistic ridge 

estimator, while  Schaefer (1986) introduced the logistic Stein estimator. Månsson and Shukur 

(2011) proposed the shrinkage estimators for the logistic ridge regression, and subsequently, 

Mansson et al., (2012) proposed the logistic Liu estimator. Ogoke et al. (2013) presented the 

modified logistic ridge estimator, and Inan and Erdogan (2013) introduced the logistic Liu-

Type estimator. Further contributions include the Almost Unbiased Logistic Liu Estimator by 

Xinfeng (2015), Asar (2016), Asar and Genc (2016), the almost unbiased ridge logistic 

estimator (AURLE) by Wu and Asar (2016), the optimal generalized logistic estimator by 

Varathan and Wijekoon (2018), the modified almost unbiased logistic Liu estimator by 

Varathan and Wijekoon (2021), Qasim et al., (2021) proposed a beta ridge regression estimator, 

Mustafa et al. (2022) worked on the beta ridge regression with different link functions, Hadia 

et al. (2022) discussed the logistic ridge estimator with different link functions, and recently, 

Lukman et al (2023) proposed the robust biased estimators for the Poisson regression model.  

Recently, there have been few studies published demonstrating the advantages of almost 

unbiased estimators in generalized linear models. Some noteworthy examples include the 

works of Qasim et al. (2020b), Alheety et al. (2021), Amin et al. (2022), Sami et al. (2023) and 

Algamal et al. (2023), among others. However, the literature on the biased estimation methods 

for the Multinomial Logistic Regression (MLR) models is limited. Only a limited number of 

studies have been published that specifically address the issue of multicollinearity, for example, 

Escabias (2008), Comminatillo and Lucadimo (2008), El-Dash et al. (2011), and Zahid and 

Tutz (2013). Abonazel and Farghali (2019) introduced a Liu-type multinomial logistic 

estimator aimed at addressing the challenges posed by multicollinearity. 

As far as our knowledge extends, the application of the Liu estimator within the MNL model 

has not been explored. This paper sets out to introduce both the MNL Liu estimator and a bias-

corrected multinomial logit Liu estimator, both adapted to address multicollinearity challenges 

in the MNL model. The structure of this study is as follows: Section 2 outlines the proposed 

estimators, while Section 3 presents the shrinkage parameters associated with these estimators. 

In Section 4, we present Monte Carlo simulation studies to illustrate the theoretical findings. 

This is followed by Section 5, which showcases the performance of these estimators using real 

datasets. Finally, Section 6 provides concluding remarks.  

2. Methodology: 

2.1 Multinomial Logit Model: 

The MNL model is the most widely recognized approach for modeling the relationship between 

the multi-categorical response variable and the set of regressors (So and Kuhfeld, 1995; Zahid 

and Tutz, 2013). This approach is particularly applicable when dealing with scenarios where 

there are m different categories of the dependent variable and m >  2. The MNL specifies 

πih =
exp (xiβh)

∑ exp (xiβh)′m
h=1

 ,          i = 1, . . . , n, h = 1, . . . , m                      (1) 

where xi is the ithrow of X which is an n × (p + 1) data matrix with p non-stochastic predictors 

and βhis a (p + 1) × 1 vector of regression coefficients. For estimating βh, the most common 

method is the MLE, which involves the maximization of the log-likelihood function: 
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l = ∑ ∑ yih(1 − πih ).

m

h=1

n

i=1

                                                                              (2) 

This is carried out by equating the first derivative of Eq. (2) to 0. Thus, the MLE can 

consequently be acquired by solving the subsequent equation:  

∂l

∂βh
  = ∑(yih − πih )xi = 0.

n

i=1

                                                                      (3) 

Since Eq.(3) is nonlinear concerning βh, an iterative weighted least square (IWLS) algorithm 

is used to solve the above nonlinear function (See Farghali et al., 2023 for more details): 

β ̂h
(MLE)

= (X′WhX)−1X′Whz,                                                                       (4) 

where Wh =  diag(πih (1 − πih )) and z is a vector where the ithelement equals zih =

log(πih )  +  
(yih−πih )

πih (1−πih) 
. The asymptotic covariance matrix of the MLE is expressed as follows: 

 Cov (β ̂h
(ML)

) = −E (
∂2l

∂βj ∂βk
′) = (X′WhX)−1. 

The asymptotic mean squared error (MSE) equals:  

MSE (βĥ
(ML)

) = tr[(X′WhX)−1] = ∑ ∑
1

λhj
,m

h=1
p+1
j=1    (4a) 

where λhj is the jtheigenvalue of the matrix X′WhX. If X′WhX is ill-conditioned then λhj tends 

to zero and the values of  (X′WhX)−1 becomes large which gives rise to unstable and inflated 

MSE of MLE (Chang 2015; Abonazel and Faraghali, 2019, Qasim et al., 2022). As a remedy 

to this problem, the new estimators are proposed in the next section. 

2.2 Proposed Estimators: 

2.2.1 Multinomial logit Liu estimator (MLLE) 

In the case of multicollinearity, the most common method is the ridge regression estimator by 

Hoerl and Kennard (1970) and is given by β̂k = (I + k(X′X)−1)−1β̂MLE. The ridge estimator 

for MNL was proposed by Månsson et al. (2018) which is given by 

β ̂(RR) = (X′WhX + kI)−1(X′WhX)β ̂h
(MLE)

,                                                      (5) 

where k = (
p+1

∏ ⬚
p+1
j=1 αhj

2 ́
)

1

p+1

.  MSE of the ridge estimator for the MNL model is given by  

MSE(β ̂(RR)) = ∑ ∑
λhj

(λhj + k)2

m

h=1

p+1

j=1

+ k2 ∑ ∑
αhj

2

(λhj + k)
2  .

m

h=1

p+1

j=1

                          (6)    

The Liu estimator for the classical linear regression model was introduced by Liu (1993), and 

it is presented as follows: 

β̂d = (X′X + I)−1(X′X + dI)β̂OLS, 
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where d(0 ≤  d ≤ 1) is the shrinkage parameter. The Liu estimator has an advantage over the 

ridge regression estimator that is, it is easier to choose d than to choose k because the Liu 

estimator is a linear function of d. The Multinomial Logit Liu estimator (MLLE) is suggested 

as a cure for the issue of inflated variance of the MLE in the case of multicollinearity. As the 

IWLS algorithm is used to find βh
(MLE)

, it approximately minimizes the weighted sum of 

squared error (WSSE). Therefore, in the WSSE sense,  βh
(MLE)

 can be considered as the optimal 

estimator. For the MNL model, we propose the following Liu estimator: 

β ̂(MLLE) = (X′WhX + I)−1(X′WhX + dI)β ̂h
(MLE)

.   (7) 

Bias(β ̂(MLLE)) = E(β ̂(MLLE)) − βh
(MLE)

. 

Bias(β ̂(MLLE)) = (X′WhX + I)−1(X′WhX + dI)βh
(MLE)

− βh
(MLE)

 

= [(X′WhX + I)−1(X′WhX + dI) − I]βh
(MLE)

. 

MSE(β ̂(MLLE)) = var(β ̂(MLLE)) + bias(β ̂(MLLE))bias(β ̂(MLLE))′. 

var(β ̂(MLLE)) = (X′WhX + I)−1(X′WhX + dI)(β ̂(MLE))(X′WhX + dI)(X′WhX + I)−1  

  = (X′WhX + I)−1(X′WhX + dI)(X′WhX)−1(X′WhX + dI)(X′WhX + I)−1.
  

Since the scalar MSE(β ̂(MLLE)) can be obtained by applying the trace operator which is stated 

as follows: 

MSE(β ̂(MLLE)) = ∑ ∑
(λhj + d)2

λhj(λhj + 1)2

m

h=1

p+1

j=1

+ (1 − d)2 ∑ ∑
αhj

2

(λhj + 1)
2

m

h=1

p+1

j=1

           (8) 

= γ1(d) + γ2(d), 

where λhj are the ordered eigenvalues of the matrix X′WhX and  α = V′β, where V′  is  an 

orthogonal matrix whose columns are eigenvectors of the corresponding eigenvalues λhj. 

2.2.2 Bias-corrected MLLE: 

Before proceeding with the development of the bias-corrected Liu estimator for the MNL 

model, it is essential to establish the definition of the almost unbiased (bias-corrected) 

estimator: 

Definition. (Xu and Yang, 2011 and Amin et al., 2022) Suppose that β ̂is a biased estimator of 

β with,  Bias (β ̂) =  E (β ̂) − β = Cβ, which implies that E(β ̂ − Cβ) = β, then the almost 

unbiased estimator based on a biased estimator β ̂ is defined as β̃ = β ̂ − Cβ ̂ = (I − C)β ̂. 

Now, we develop an almost unbiased MLLE (AUMLLE) for the MNL model: 

Bias(𝛽 ̂(𝑀𝐿𝐿𝐸)) = −(1 − 𝑑)(𝑋′𝑊ℎ𝑋 + 𝐼)−1𝛽ℎ
(𝑀𝐿𝐸)

 

𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸) = (𝐼 + (𝑋′𝑊ℎ𝑋 + 𝐼)−1(1 − 𝑑))𝛽 ̂(𝑀𝐿𝐿𝐸) 

= [𝐼 − (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2)𝛽 ̂ℎ
(𝑀𝐿𝐸)

                                     (9) 
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𝐵𝑖𝑎𝑠(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸)) = −(𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2𝛽 ̂ℎ
(𝑀𝐿𝐸)

. 

𝑉𝑎𝑟(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸))

= [𝐼 − (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2]𝑣𝑎𝑟(𝛽 ̂ℎ
(𝑀𝐿𝐸)

)[𝐼

− (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2] 

= [𝐼 − (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2](𝑋′𝑊ℎ𝑋)−1[𝐼 − (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2]. 

The scalar MSE of the AUMLLE for the MNL model is given by: 

𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸)) = ∑ ∑

(1 −
(1 − 𝑑)2

(𝜆ℎ𝑗 + 1)2)2

𝜆ℎ𝑗

𝑚

ℎ=1

𝑝+1

𝑗=1

+ (1 − 𝑑)4 ∑ ∑
𝛼ℎ𝑗

2

(𝜆ℎ𝑗 + 1)4

𝑚

ℎ=1

𝑝+1

𝑗=1

 

𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸))

= ∑ ∑
(𝜆ℎ𝑗 + 𝑑)

2
(𝜆ℎ𝑗 + 2 − 𝑑)

2

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)
4

𝑚

ℎ=1

𝑝+1

𝑗=1

+ (1 − 𝑑)4 ∑ ∑
𝛼ℎ𝑗

2

(𝜆ℎ𝑗 + 1)
4

𝑚

𝑗=1

𝑝+1

𝑗=1

.     (10) 

where 𝜆ℎ𝑗 are the ordered eigenvalues of the matrix 𝑋′𝑊ℎ𝑋 and  𝛼 = 𝑉′𝛽, where 𝑉′  is  an 

orthogonal matrix whose columns are eigenvectors of the corresponding eigenvalues 𝜆ℎ𝑗. 

2.3 Superiority of the new estimators 

The performance of the proposed estimators is compared with the MLE. The AUMLLE has a 

smaller MSE as compared to the MLLE under some conditions. The following lemma is 

required to prove the theorem. 

Lemma 1: Let two linear estimators of 𝛼 are �̂�𝑖 = 𝐴𝑖𝑋, 𝑖 = 1,2.  Suppose that 𝐷 = 𝐶𝑜𝑣(�̂�1) −
𝐶𝑜𝑣(�̂�2)  is p.d. then ∆=  𝑀𝑆𝐸(�̂�1) − 𝑀𝑆𝐸(�̂�2)  is n.n.d iff �́�2(𝐷 + �́�1𝑎1)𝑎2 ≤ 1, where 𝑎𝑗 

denotes the bias vector of �̂�𝑗. 

Theorem 1: Under the MNL model, we have ||𝐵𝑖𝑎𝑠𝑀𝐿𝐿𝐸||2 − ||𝐵𝑖𝑎𝑠𝐴𝑈𝑀𝐿𝐿𝐸||
2

> 0 for 0 <

𝑑 < 1. 

Proof: 

||𝐵𝑖𝑎𝑠𝑀𝐿𝐿𝐸||2 − ||𝐵𝑖𝑎𝑠𝐴𝑈𝑀𝐿𝐿𝐸||
2

= (𝑑 − 1)2 ∑ ∑
𝛼ℎ𝑗

2

(𝜆ℎ𝑗+1)2
𝑚
ℎ=1

𝑝+1
𝑗=1 -(1 −

𝑑)4 ∑ ∑
𝛼ℎ𝑗

2

(𝜆ℎ𝑗+1)4
𝑚
ℎ=1

𝑝+1
𝑗=1  

     =(1 − 𝑑)2 ∑ ∑ (
𝛼ℎ𝑗

2

(𝜆ℎ𝑗+1)2 − (1 − 𝑑)2 𝛼ℎ𝑗
2

(𝜆ℎ𝑗+1)4)𝑚
ℎ=1

𝑝+1
𝑗=1  

=(1 − 𝑑)2 ∑ ∑ 𝛼ℎ𝑗
2 (

(𝜆ℎ𝑗+1)2−(1−𝑑)2

(𝜆ℎ𝑗+1)4 )𝑚
ℎ=1

𝑝+1
𝑗=1  

=(1 − 𝑑)2 ∑ ∑ 𝛼ℎ𝑗
2 (

(𝜆ℎ𝑗+𝑑)(𝜆ℎ𝑗−𝑑+2)

(𝜆ℎ𝑗+1)4 )𝑚
ℎ=1

𝑝+1
𝑗=1 . 

It can be easily seen that the difference of ||𝐵𝑖𝑎𝑠𝑀𝐿𝐿𝐸||2 − ||𝐵𝑖𝑎𝑠𝐴𝑈𝑀𝐿𝐿𝐸||
2
 is positive, when 

0 < 𝑑 < 1.  
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2.4 Comparison between MLLE and AUMLLE 

Consider  

∆= 𝑀𝑆𝐸(𝛽 ̂(𝑀𝐿𝐿𝐸)) − 𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸)) = 𝐷 + 𝑏𝑖𝑎𝑠𝑀𝐿𝐿𝐸 ́𝑏𝑖𝑎𝑠𝑀𝐿𝐿𝐸 −

𝑏𝑖𝑎𝑠𝐴𝑈𝑀𝐿𝐿𝐸 ́𝑏𝑖𝑎𝑠𝐴𝑈𝑀𝐿𝐿𝐸 ,  (11) 

where𝐷 = {(𝑋′𝑊ℎ𝑋 + 𝐼)−1(𝑋′𝑊ℎ𝑋 + 𝑑𝐼)(𝑋′𝑊ℎ𝑋)−1(𝑋′𝑊ℎ𝑋 + 𝑑𝐼)(𝑋′𝑊ℎ𝑋 + 𝐼)−1} −
{[𝐼 − (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2](𝑋′𝑊ℎ𝑋)−1[𝐼 − (𝑋′𝑊ℎ𝑋 + 𝐼)−2(1 − 𝑑)2]}. The following 

theorem gives necessary and sufficient conditions for 𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸) to be superior to 𝛽 ̂(𝑀𝐿𝐿𝐸). 

Theorem 2: Under the MNL model, if 𝛼ℎ𝑗
2 >

𝜆ℎ𝑗+2

2𝜆ℎ𝑗+3
 , 0 < 𝑚 < 1, where 𝑚 = 1 −

𝑑,then𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸) is superior to 𝛽 ̂(𝑀𝐿𝐿𝐸) in the MSE sense namely 𝑀𝑆𝐸(𝛽 ̂(𝑀𝐿𝐿𝐸)) −

𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸)) ≥ 0 

Proof: From Equations (6) and (8), the difference in scalar MSE is: 

𝑀𝑆𝐸(𝛽 ̂(𝑀𝐿𝐿𝐸)) − 𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸))

= ∑ ∑
(𝜆ℎ𝑗 + 𝑑)

2

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)
2

𝑚

ℎ=1

𝑝+1

𝑗=1

+ (1 − 𝑑)2 ∑ ∑
𝛼ℎ𝑗

2

(𝜆ℎ𝑗 + 1)
2

𝑚

ℎ=1

𝑝+1

𝑗=1

− ∑ ∑
(𝜆ℎ𝑗 + 𝑑)

2
(𝜆ℎ𝑗 + 2 − 𝑑)

2

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)
4

𝑚

ℎ=1

𝑝+1

𝑗=1

− (1 − 𝑑)4 ∑ ∑
𝛼ℎ𝑗

2

(𝜆ℎ𝑗 + 1)
4

𝑚

𝑗=1

𝑝+1

𝑗=1

. 

= ∑ ∑
𝜔ℎ𝑗𝛼ℎ𝑗

2(1 − 𝜔ℎ𝑗)

𝜆ℎ𝑗
{𝜆ℎ𝑗𝜔ℎ𝑗(1 + 𝜔ℎ𝑗) − 𝛼ℎ𝑗

∗ (1 − 𝜔ℎ𝑗)(2 + 𝜔ℎ𝑗)}

𝑚

ℎ=1

𝑝+1

𝑗=1

, 

where 𝜔ℎ𝑗 =
1−𝑑

(𝜆ℎ𝑗+1)
, 𝑎𝑛𝑑 𝛼ℎ𝑗

∗ =
1

𝛼ℎ𝑗
2. 

We can see that 0 < 𝛼ℎ𝑗
∗ = 𝜔ℎ𝑗 < 1 and 𝜆ℎ𝑗 > 0, then 𝑀𝑆𝐸(𝛽 ̂(𝑀𝐿𝐿𝐸)) −

𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸)) ≥ 0 iff 𝜆ℎ𝑗𝜔ℎ𝑗(1 + 𝜔ℎ𝑗) − 𝛼ℎ𝑗
∗ (1 − 𝜔ℎ𝑗)(2 + 𝜔ℎ𝑗) ≥ 0 or 

(𝜆ℎ𝑗 + 𝛼ℎ𝑗
∗ )𝑚2 + (𝜆ℎ𝑗 + 𝛼ℎ𝑗

∗ )(𝜆ℎ𝑗 + 1)𝑚 − 2𝛼ℎ𝑗
∗ (1 − 𝜔ℎ𝑗)(𝜆ℎ𝑗 + 1)

2
≥ 0,  where 𝑚 =

1 − 𝑑. (𝜆ℎ𝑗 + 𝛼ℎ𝑗
∗ )𝑚2 + (𝜆ℎ𝑗 + 𝛼ℎ𝑗

∗ )(𝜆ℎ𝑗 + 1)𝑚 − 2𝛼ℎ𝑗
∗ (1 − 𝜔ℎ𝑗)(𝜆ℎ𝑗 + 1)

2
= 0 

has two roots given by  

𝑚1 =
(𝜆ℎ𝑗+1)

2
(−1 − √

𝜆ℎ𝑗+9𝛼ℎ𝑗
∗

𝜆ℎ𝑗+𝛼ℎ𝑗
∗ ) and 𝑚2 =

(𝜆ℎ𝑗+1)

2
(−1 + √

𝜆ℎ𝑗+9𝛼ℎ𝑗
∗

𝜆ℎ𝑗+𝛼ℎ𝑗
∗ ) 

It is evident that  𝑚1 < 0 and 𝑚1<𝑚2. Since 0 < 𝑚 < 1, we acquire 𝛼ℎ𝑗
2 >

𝜆ℎ𝑗+2

2𝜆ℎ𝑗+3
 ,  

Then for 0 < 𝑚 < 1 , 𝑀𝑆𝐸(𝛽 ̂(𝑀𝐿𝐿𝐸)) − 𝑀𝑆𝐸(𝛽 ̂(𝐴𝑈𝑀𝐿𝐿𝐸)) ≥ 0. 

 

3. Selection of shrinkage parameter 
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We can obtain the optimal value of d by minimizing the MSE of the MLLE and the 

AUMLLE estimator as follows: 

● Taking the first derivative of 𝑀𝑆𝐸(𝛽 ̂(𝑀𝐿𝐿𝐸)) concerning 𝑑 and equating it to zero, we 

get: 

∑ ∑ {
2

𝜆ℎ𝑗

(𝜆ℎ𝑗 + 𝑑)

(𝜆ℎ𝑗 + 1)2
−

2(1 − 𝑑)𝛼ℎ𝑗
2

(𝜆ℎ𝑗 + 1)4 }

𝑚

ℎ=1

𝑝+1

𝑗=1

= 0. 

Solving the above equation, we get  

𝑑𝑀𝐿𝐿𝐸 =

∑ ∑
𝜆ℎ𝑗(𝛼ℎ𝑗

2 − 1)

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)2
𝑚
ℎ=1

𝑝+1
𝑗=1

∑ ∑
(𝜆ℎ𝑗𝛼ℎ𝑗

2 + 1)

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)2
𝑚
ℎ=1

𝑝+1
𝑗=1

 

And taking the first derivative of 𝑀𝑆𝐸(𝛽(𝐴𝑈𝑀𝐿𝐿𝐸)) concerning 𝑑 and equating it to 0 we 

get: 

∑ ∑ {
4

𝜆ℎ𝑗
(1 −

(1 − 𝑑)2

(𝜆ℎ𝑗 + 1)2)
(1 − 𝑑)

(𝜆ℎ𝑗 + 1)2
− 4

(1 − 𝑑)3𝛼ℎ𝑗
2

(𝜆ℎ𝑗 + 1)4 }

𝑚

ℎ=1

𝑝+1

𝑗=1

= 0. 

Solving this equation for 𝑑 we get: 

 𝑑𝐴𝑈𝑀𝐿𝐿𝐸 = 1 − √

∑ ∑
1

𝜆ℎ𝑗(𝜆ℎ𝑗+1)2
𝑚
ℎ=1

𝑝+1
𝑗=1

∑ ∑
(𝜆ℎ𝑗𝛼ℎ𝑗

2+1)

𝜆ℎ𝑗(𝜆ℎ𝑗+1)4
𝑚
ℎ=1

𝑝+1
𝑗=1

. 

respectively. Since 𝑑𝑀𝐿𝐿𝐸 and 𝑑𝐴𝑈𝑀𝐿𝐿𝐸 depend on the unknown parameter 𝛼ℎ𝑗 , so, we replace 

them with their estimates and the estimated values are 

�̂�𝑀𝐿𝐿𝐸 =

∑ ∑
𝜆ℎ𝑗(�̂�ℎ𝑗

2 − 1)

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)2
𝑚
ℎ=1

𝑝+1
𝑗=1

∑ ∑
(𝜆ℎ𝑖�̂�ℎ𝑗

2 + 1)

𝜆ℎ𝑗(𝜆ℎ𝑗 + 1)2
𝑚
ℎ=1

𝑝+1
𝑗=1

 

And  

 �̂�𝐴𝑈𝑀𝐿𝐿𝐸 = 1 − √

∑ ∑
1

𝜆ℎ𝑗(𝜆ℎ𝑗+1)2
𝑚
ℎ=1

𝑝+1
𝑗=1

∑ ∑
(𝜆ℎ𝑗�̂�ℎ𝑗

2
+1)

𝜆ℎ𝑗(𝜆ℎ𝑗+1)4
𝑚
ℎ=1

𝑝+1
𝑗=1

 

4. Monte Carlo Simulation 

4.1 Simulation Layout 

The simulation study is conducted to assess and compare the performance of the MLLE, and 

AUMLLE  based on 𝑑𝑀𝐿𝐿𝐸 and 𝑑𝐴𝑈𝑀𝐿𝐿𝐸with ML estimator and ridge estimator. In this study, 

the dependent variable of the MNL model is generated using pseudo-random numbers from the 

multinomial regression model, where   
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𝜋𝑖ℎ =
𝑒𝑥𝑝 (𝑥𝑖𝛽ℎ)

∑ 𝑒𝑥𝑝 (𝑥𝑖𝛽ℎ)𝑚
ℎ=1

,           𝑖 = 1, . . . , 𝑛, ℎ = 1, . . . , 𝑚                   

The parameter values are chosen so that 𝛽́′𝛽 = 1 , which is a generally used constraint in this 

field see Kibria(2003), Asar (2016) and Mannson et al.(2018). Following (Suhail et al., 2020), 

(Babar & Chand, 2022), and (Wasim et al., 2023), the correlated explanatory variables have 

been generated as: 

𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝑧𝑖𝑗 + 𝜌𝑧𝑖(𝑗+1) ,                    𝑖 = 1,2, … , 𝑛,        𝑗 = 1,2, … . , 𝑝 

where 𝑧𝑙𝑖 are the pseudo-random numbers produced from the normal distribution. The factors 

we choose to vary are the correlation between the predictor variables (𝜌), the number of 

predictor variables (𝑝), the sample size(𝑛), and the levels of the outcome variable (𝑚). The 

scenarios for the simulation study are summarized in Table 1: 

Table 1: Parametric conditions of the simulation layout 

𝑛 50 100 150 200 300 

𝜌 0.80 0.85 0.90 0.95 0.99 

𝑝 2 4 8 — — 

𝑚 3 5 — — — 

 

To investigate whether the MLLE and AUMLLE estimators are better than the ML estimator, 

MSE is computed using the following equation: 

𝑀𝑆𝐸 =
∑ ∑ (�̂�𝑗 − 𝛽𝑗)′(�̂�𝑗 − 𝛽𝑗)𝑚

𝑗=2
𝑅
𝑖=1

𝑅
, 

where �̂�𝑗 is the estimator of 𝛽𝑗 obtained from the MLLE, AUMLLE, MLE and ridge estimator. 

𝑅 = 2000 indicating the number of replicates used in the Monte Carlo simulation. The values 

in parentheses in all tables represent the Bias of the estimators. R software was used to run the 

simulation.  

4.2 Results and Discussion:  

Tables 2-4 illustrate the simulated MSE values for the proposed estimators and the MLE, 

considering various factors we deliberately varied. The performance evaluation encompasses 

AUMLLE, MLLE, ridge, and MLE, with the variations encompassing n (sample size), p 

(number of explanatory variables), m (levels of the response variable), and ρ (degree of 

correlation). Specifically, Table 2 showcases MSEs for p =2 with varying n, m, and ρ. 

Similarly, Table 3 presents MSEs for p=4, and Table 4 depicts MSEs for p=8. 

Across all scenarios, the MLE exhibits the highest MSE values in comparison to ridge, MLLE, 

and AUMLLE, indicative of the superior performance of the proposed estimators. Furthermore, 

a consistent trend is observed where increased n yields decreased MSE values for all estimators 

(refer to Figures 1-2), highlighting the significant positive impact of larger sample sizes on 

estimator performance. 

As ρ escalates while keeping m and p constant, the MSE of all estimators increases, signifying 

a detrimental impact on estimator performance. However, it's noteworthy that the adverse 
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impact of ρ can be mitigated by augmenting the sample size, as evidenced by the simulation 

outcomes. It's noteworthy that MLE experiences the greatest influence from rising ρ. 

Moreover, with increasing levels of the response variable (m), the MSE and Bias values of all 

estimators rise in tandem, holding ρ and p constant. The escalation in MSE and Bias is 

particularly pronounced for MLE and ridge estimators when the response variable levels 

increase. Similarly, augmenting the number of explanatory variables elevates the MSE and 

Bias across all estimators. The deleterious effect of heightened p is more pronounced when m 

and ρ take on larger values with a smaller n. Notably, the performance of MLE is compromised 

as the number of regressors increases. Consequently, for given n, increases in m, ρ, and p inflate 

the MSE and Bias values for all estimators. Specifically, the highest MSE value is observed 

when n = 50, p=8, m=5, and ρ = 0.99, while the lowest MSE value occurs when n = 300, p=2, 

m =3, and ρ =0.80. Overall, the simulation study consistently demonstrates the superior 

performance of the proposed estimators in comparison to MLE, with MLLE yielding the 

smallest MSE values across all scenarios. 

Table 2: MSE values and biases of MNL estimators when 𝑝 = 2 

𝑛  𝑚 = 3  𝑚 = 5 

 MLE  Ridge MLLE AUML

LE 

MLE Ridge MLLE AUML

LE 

  𝜌 = 0.80 

50 2.0907     1.1416    

(0.628

9) 

1.0125  

(0.566

6)    

1.0598    

(0.5128

)    

5.2891     2.8027    

(0.988

1) 

2.4184  

(0.8689

)    

2.6624    

(0.7395

) 

100 0.5653     0.3949    

(0.223

2) 

0.3406  

(0.298

5)  

0.3478    

(0.2597

) 

1.8924     1.1292    

(0.438

3) 

0.9963  

(0.5121

)     

1.109    

(0.4171

) 

200 0.4765     0.3181    

(0.170

2) 

0.2735  

(0.256

1)    

0.2738     

(0.225) 

1.4821     0.8846    

(0.339

2) 

0.7634  

(0.4337

)    

0.8338     

(0.354) 

250 0.4332     0.2804    

(0.146

8) 

0.2379  

(0.232

8)   

0.2362    

(0.2053

) 

1.0752     0.6773    

(0.249

4) 

0.5727   

(0.366)    

0.6192    

(0.2971

) 

300 0.4042     0.2252    

(0.115

2) 

0.1969  

(0.195

6)    

0.1924    

(0.1735

) 

1.1327     0.6821    

(0.251

9) 

0.5709  

(0.3693

)    

0.6148    

(0.3008

) 

  𝜌 = 0.85 

50 1.7017     

 

0.9419    

(0.499

8) 

0.8434  

(0.492

9)    

0.877    

(0.4314

) 

6.4725     

 

3.4817    

(1.128

9) 

2.9955  

(0.9918

)    

3.2595    

(0.8483

) 

100 0.9628     0.5725    

(0.322

8) 

0.4997  

(0.370

3)    

0.5154    

(0.3256

)   

  

3.4445      

1.837    

(0.688

5) 

1.6242  

(0.6815

)    

1.7829    

(0.5628

) 

200 0.717      0.419    

(0.230

6) 

0.3598  

(0.306

1)   

0.3634    

(0.2713

) 

2.1759     1.2047     

(0.479

)  

1.055  

(0.5351 

) 

1.1602    

(0.4424

) 

250 0.4352        0.27    

(0.139

7) 

0.2307  

(0.225

1)    

0.2284    

(0.1983

) 

1.3229      0.799    

(0.305

7) 

0.6818  

(0.4083

)    

0.7417    

(0.3338

)                                                                                                                                                                                                                                                                                                                                                     
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300 0.4188     0.2589    

0.2216     

0.2130  

(0.21)   

0.2158 

(0.2150

) 

0.3597     0.2417    

(0.124

8) 

0.2001  

(0.2169

)    

0.1978    

(0.1895

) 

  𝜌 = 0.90 

50 4.8994     2.5521    

(1.147

1) 

2.0503  

(0.867

6)    

2.1133    

(0.8135

) 

8.8407     

 

4.7392    

(1.479

5) 

3.8815  

(1.1974

) 

4.1675    

(1.0653

) 

100 0.5127     

 

0.3402    

(0.201

4) 

0.2847   

(0.282

)     

0.2921    

(0.2502

) 

3.5857     1.9611    

(0.773

2) 

1.7316   

(0.738)    

1.9274     

(0.623) 

200 0.5543     0.3589    

(0.216

4) 

0.3006  

(0.292

6)    

0.3095      

(0.26)   

2.0099     1.1327    

(0.482

4) 

0.9979  

(0.5213

) 

1.1134    

(0.4339

) 

250 0.4774     0.3238     

(0.194

) 

0.271   

 

(0.270

) 

0.2791    

(0.2455

) 

1.6479     0.9937    

(0.399

5) 

0.8616  

(0.4784

)    

0.9523    

(0.3927

) 

300 0.4108      0.295    

(0.175

7) 

0.2431  

(0.242

8)    

0.2484    

(0.2312

) 

1.7162     0.9966    

(0.412

3) 

0.8684   

(0.483)    

0.9561    

(0.4013

) 

  𝜌 = 0.95 

50 5.4215     2.8531    

(1.237

7) 

2.2425  

(0.911

8)     

2.313    

(0.8622

) 

26.244

1     

15.273    

(3.117

6) 

10.806

1  

(2.1529 

)  

10.9836    

(2.0667

) 

100 2.8559     1.4228    

(0.796

5) 

1.2282  

(0.661

3)       

1.2808    

(0.6126

) 

8.1979     4.3359    

(1.433

3) 

3.5811  

(1.1611

)    

3.8501    

(1.0329

) 

200 1.5001     0.7659     

(0.489

)  

0.6784  

(0.481

3)    

0.7105    

(0.4375

) 

3.3036     1.7726    

(0.736

8) 

1.5667  

(0.7114

)    

1.7476    

(0.5997

) 

250 0.7358     0.4347    

(0.275

1) 

0.3693   

(0.336

)       

0.3837    

(0.3001

) 

3.2763     1.7429     

(0.731

) 

1.5373  

(0.7021

)    

1.7186    

(0.5916

)   

300 0.7651     0.4615    

(0.298

1) 

0.3959  

(0.351

4)    

0.4143    

(0.3179

) 

2.4459     1.3422    

(0.589

9) 

1.1905  

(0.6034

)    

1.3353    

(0.5078

) 

  𝜌 = 0.99 

50 22.062

2 

13.684

8 

(3.079

4) 

8.4651  

(1.899

1) 

8.4749     

(1.878)      

100.43

86     

69.639  

(7.192

8) 

(40.685

2) 

(4.3125

) 

40.6568  

(4.2782

) 

100 12.297

1 

6.8417    

(2.154

7) 

4.7819  

(1.418

2 )      

4.8103    

(1.3885

)     

39.956

2    

24.257

5    

(4.134

2) 

16.770

9  

(2.7741

)   

16.7553    

(2.7143

) 

200 5.7754  2.8531    

(1.306

9) 

2.289  

(0.969

6) 

2.3419    

(0.9297

) 

19.441

8     

10.854    

(2.609

6) 

8.2149  

(1.9246

)   

8.3365    

(1.8297

) 
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Note: The bias values are given in parentheses. 

Table 3: MSE values and biases of MNL estimators when 𝑝 = 4 

𝑛  𝑚 = 3  𝑚 = 5 

 MLE Ridge MLL

E 

AUML

LE 

MLE Ridge MLLE AUML

LE 

  𝜌 = 0.80 

50 4.7167     2.7177    

(1.028

4)) 

2.357

4  

(0.88

06)    

2.5372    

(0.8081

) 

17.114

5     

10.653    

2.4548 

8.0486  

1.6847    

8.7291     

1.511 

100 2.3636     1.4012     

(0.585

) 

1.251

3  

(0.61

84)    

1.3788     

(0.515) 

6.8466     3.9878    

(1.190

5) 

3.5429  

(1.047

1)  

3.9794    

(0.8017

) 

200 0.85     0.6124    

(0.207

1) 

0.516

7  

(0.37

74)   

0.551    

(0.3186

)    

4.0409     2.4518    

(0.714

2) 

2.2452  

(0.810

4)    

2.5307     

(0.678) 

250 0.7354     0.5404    

(0.183

6)  

0.450

7  

(0.34

51)    

0.4838    

(0.2814

) 

2.0135     2.0135    

(1.365

7)    

1.1799  

(0.560

1)    

1.3259    

(0.4631

) 

300 0.5785     0.4486    

(0.144

2) 

0.370

7  

(0.30

75)    

0.3925    

(0.2515

) 

1.7473     1.2002    

(0.322

6) 

1.0263  

(0.507

9)    

1.1674    

(0.4007

) 

  𝜌 = 0.85 

50 5.842     3.4399    

(1.253

4) 

2.851

6  

(0.99

36)      

3.0747    

(0.9025

) 

26.335

1    

17.211

6     

(3.336

) 

11.980

1  

(2.118

1) 

12.794

1    

(1.9598

) 

100 2.3849     1.4086    

(0.578

5) 

1.258

4  

(0.61

85)    

1.3804    

(0.5252

) 

9.5108     5.4412    

(1.502

7) 

4.8248    

(1.28) 

5.3596     

(1.121) 

200 1.294     0.8458     

(0.331

) 

0.730

9  

(0.46

04)    

0.804    

(0.3741

)    

3.7664     2.3116    

(0.690

7) 

2.1066  

(0.786

2 ) 

2.3994    

(0.6521

) 

250 5.1394 2.5407    

(1.216

3) 

2.0629  

(0.915

1) 

2.1109    

(0.8725

) 

15.958

9     

8.6349    

(2.280

6)   

6.626  

(1.7029

)    

6.8042    

(1.5969

) 

300 3.9958  2.0245    

(1.056

5) 

1.7149  

(0.836

7)      

1.759    

(0.7907

) 

13.422

5 

7.2117    

(2.041

6) 

5.6077  

(1.5516

)     

5.8361     

(1.441) 
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250 0.9075     0.6294    

(0.228

3) 

0.529

7  

(0.37

89) 

0.5779    

(0.3035

) 

2.8511     1.7927    

(0.524

8) 

1.6013  

(0.660

8) 

1.8268    

(0.5328

) 

300 0.7238 

 

0.5298    

(0.181

8) 

0.440

2  

(0.34

14) 

0.475    

(0.2751

) 

2.4764     1.5761     

(0.463

) 

1.3957  

(0.604

7) 

1.5931    

(0.4806

) 

  𝜌 = 0.90 

50 10.301

1     

6.3256    

(1.925

4) 

4.680

3  

(1.33

04) 

4.9955     

(1.225) 

36.154

3    

24.287

2      

(4.11) 

15.952

7  

(2.507

6)   

16.818

3    

(2.3558

) 

100 3.7503     2.1342    

(0.875

1) 

1.874

4  

(0.79

04) 

2.0593     

(0.672) 

10.918

4     

6.3662     

(1.722

) 

5.4425   

(1.381

)    

6.0336    

(1.1962

) 

200 1.7691      1.095     

(0.432

) 

0.965

6  

(0.55

65) 

1.0667     

(0.471) 

4.9134     2.8924    

(0.869

1) 

2.6309  

(0.893

2) 

2.9933    

(0.7412

) 

250 1.3694     0.9079    

(0.350

3) 

0.782

5  

(0.49

09)    

0.8659     

(0.404) 

4.535     2.6809     

(0.809

) 

2.4306  

(0.855

4)   

2.7763    

(0.7007

) 

300 1.1379  

 

0.767    

(0.288

7) 

0.656

3  

(0.43

63) 

0.7225    

(0.3566

) 

3.6341     2.2224     

(0.673

) 

2.0133  

(0.760

8) 

2.308     

(0.613) 

  𝜌 = 0.95 

50 21.136

9    

14.509

9    

(3.148

6) 

8.964

4  

(1.90

32) 

9.329    

(1.8201

) 

55.538

9    

39.411

6    

(5.466

9) 

24.734  

(3.233

9) 

25.780

3     

(3.108) 

100 8.6715     5.0046    

(1.691

2) 

3.997

2  

(1.24

53) 

4.2759    

(1.1442

) 

23.619

6     

14.721    

(3.074

9) 

11.019

9  

(2.101

7) 

11.770

9    

(1.9308

) 

200 3.3298     1.8709     

(0.769

)   

1.691  

(0.77

59)    

1.8613    

(0.6729

) 

10.534

1     

6.1114    

(1.669

7) 

5.2996  

(1.390

5) 

5.9086    

(1.2074

) 

250 2.5832      1.486    

(0.624

4) 

1.323

9  

(0.65

88) 

1.4791    

(0.5482

) 

7.9676     4.6037    

(1.333

4) 

4.0252  

(1.165

7) 

4.5455     

(0.979) 

300 2.2202   

 

1.3124    

(0.547

7) 

1.169

3  

(0.61

62)      

1.3065    

(0.5081

) 

7.968    

 

4.5845    

(1.337

3) 

4.0293  

(1.165

5)     

4.559    

(0.9796

) 
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  𝜌 = 0.99 

50 105.32

62    

88.113

8    

(8.518

9) 

44.02

44  

(4.44

37) 

44.284

3    

(4.4115

) 

519.12

15   

471.87

16   

(20.05

51) 

215.43

33  

(9.909

9) 

216.00

97    

(9.8602

) 

100 43.874

2    

32.616

6    

(5.103

6) 

18.89

12  

(2.92

75) 

19.148     

(2.861) 

138.62

4   

109.31

03    

(9.600

6) 

61.414

9  

(5.372

3) 

62.011

2    

(5.2883

) 

200 18.805

2    

12.200

6    

(2.971

2) 

8.425

5  

(1.93

99) 

8.7189    

(1.8415

) 

50.152

4    

34.086

3    

(5.112

3) 

23.252

8  

(3.265

8 )  

24.101

8    

(3.1336

) 

250 14.666

8     

9.2066    

(2.514

6) 

6.640

5  

(1.69

63) 

6.9547    

(1.5861

) 

51.493

8    

35.284

6    

(5.209

4) 

23.812

9  

(3.315

3) 

24.58      

(3.18) 

300 13.273

4 

 

8.0937    

(2.325

5) 

5.934

3  

(1.58

74) 

6.2385    

(1.4739

) 

39.164  

 

25.908

1    

(4.350

7) 

18.078

4    

(2.85)   

18.844

7    

(2.7011

) 

Note: The bias values are given in parentheses. 

Table 4: MSE values and biases MNL estimators when  𝑝 = 8.  

𝑛  𝑚 = 3  𝑚 = 5 

 MLE Ridge MLLE AUML

LE 

MLE Ridge MLLE AUML

LE 

  𝜌 = 0.80 

50 9.148

3      

6.137    

(1.397

3) 

4.245

3  

(0.844

5) 

4.6194    

(0.747

5) 

63.29

99    

46.618

5    

(5.835

3) 

27.789

6  

(3.003

6) 

29.851

9    

(2.781

1) 

100 5.029

8     

2.9617     

(0.832

) 

2.709

2  

(0.895

6)    

3.0211    

(0.762

3) 

17.16

69    

10.191

9    

(2.107

2) 

8.947  

(1.670

1) 

10.015    

(1.409

5) 

200 1.984     1.3951    

(0.320

2) 

1.193

8  

(0.562

8) 

1.3693    

(0.417

1) 

6.560

3     

4.0825    

(0.878

4) 

3.7618  

(0.990

1)    

4.3972    

(0.737

1) 

250 1.583

1     

1.1648    

(0.259

3) 

0.978

3  

(0.491

2) 

1.1312    

(0.350

6) 

5.445

9      

3.465    

(0.720

9) 

3.1579  

(0.894

7) 

3.7047    

(0.657

6) 

300 1.345

1     

1.0014    

(0.223

4) 

0.834

2   

(0.436

) 

0.961    

(0.306

7) 

3.975

4     

2.6763    

(0.521

9) 

2.3771  

(0.746

1) 

2.8088    

(0.529

4) 
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  𝜌 = 0.85 

50 26.27

35    

19.059

3    

(3.504

9) 

11.48

88   

(1.917

) 

12.389

2    

(1.749

2) 

83.71

86    

65.017

2    

(6.960

8) 

35.350

3  

(3.425

6) 

37.722

2    

(3.207

6) 

100 7.476

4     

4.4647    

(1.297

7) 

3.884  

(1.085

1) 

4.3878    

(0.886

9) 

26.07

38    

16.489

5    

(3.071

9) 

12.815

1  

(2.069

7) 

14.096

3    

(1.797

8) 

200  2.858     1.8294    

(0.513

2) 

1.630

2  

(0.636

7)    

1.8911    

(0.470

9) 

9.495

7     

5.7647    

(1.281

8) 

5.2944  

(1.222

8) 

6.1528    

(0.947

2) 

250 2.153

2     

1.4796    

(0.359

3) 

1.280

8  

(0.575

1)     

1.486    

(0.417

3)   

7.292     4.5063     

(0.984

) 

4.1468  

(1.050

9)    

4.8796    

(0.780

7) 

300 1.722

8     

1.2397     

(0.292

) 

1.054  

(0.505

6) 

1.2259    

(0.360

5) 

5.568

9     

3.5832    

(0.746

6) 

3.2757  

(0.916

2)    

3.8747    

(0.670

3) 

  𝜌 = 0.90 

50 40.37

66    

30.841

9    

(4.561

2) 

17.04

75  

(0.409

2) 

18.218

6    

(2.258

3) 

121.9

551    

98.998

3    

(8.848

5) 

50.574

2   

(4.245

) 

53.324

2    

(4.044

5) 

100 9.86     5.7878     

(1.599

) 

4.969

3  

(1.272

6) 

5.5765    

(1.068

4) 

35.04

18    

22.598

3    

3.7857 

17.241

3  

2.4975   

18.823

1    

2.2504 

200 4.221

4      

2.575    

(0.749

6)   

2.324  

(0.798

7)    

2.7025     

(0.602) 

13.99

84     

8.3062    

(1.785

5) 

7.451  

(1.525

9) 

8.5471    

(1.236

3) 

250 3.349

2     

2.1119    

(0.570

9) 

1.893

6  

(0.728

8)    

2.2079    

(0.544

4) 

10.85

04     

6.5121    

(1.417

1) 

5.9699  

(1.336

6)   

6.9403    

(1.047

2) 

300 2.614

1     

1.7378    

(0.456

6) 

1.524

2  

(0.625

8)    

1.7931    

(0.451

4) 

9.255

4     

5.7223    

(1.276

7) 

5.2096  

(1.216

9) 

6.1355     

(0.923) 

  𝜌 = 0.95 

50 70.52

23    

57.630

6    

(6.578

5) 

28.93

51  

(3.319

7) 

30.235

4    

(3.169

1) 

203.0

149   

171.80

41    

(12.02

2) 

83.183

2  

(5.587

6) 

86.827

4    

(5.417

6) 

100 22.84

8    

14.969

5    

(3.149

6) 

10.71

19  

(2.016

6) 

11.626

3    

(1.811

4) 

71.27

62     

50.828    

(6.263

2) 

33.634

7   

(3.687

) 

35.754

7    

(3.465

5) 
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200 8.854

6     

5.2802    

(1.488

6) 

4.571

6  

(1.224

9)    

5.2368    

(0.992

9) 

29.00

78    

18.004

6    

(3.247

3) 

14.601

2  

(2.322

6) 

16.121

5    

(2.043

1) 

250 6.452

4     

3.8314    

(1.116

3) 

3.406

3  

(1.019

2) 

3.9572    

(0.797

3) 

22.03

53    

13.665

1    

(2.681

3) 

11.392

1  

(2.002

1) 

12.767

7     

(1.702) 

300 4.971

9     

3.0156    

(0.861

5) 

2.720

5  

(0.903

3) 

3.1947    

(0.690

2) 

17.13

14    

10.393

7    

(2.174

9) 

9.0599  

(1.732

5) 

10.318

9     

(1.429) 

  𝜌 = 0.99 

50 380.5

692   

354.40

97   

(17.23

17) 

152.0

629  

(7.884

8) 

153.80

81     

(7.836)  

1690.

285   

1629.1

99   

(37.45

51) 

640.08

13 

(16.15

54) 

644.30

39    

(16.09

7) 

100 120.2

018    

99.287

9    

(9.254

6) 

53.39

28  

(4.924

3) 

54.390

1    

(4.822

3) 

359.4

421    

310.07

4   

(16.75

69) 

162.16

85  

(8.622

5) 

164.88

15    

(8.514

1) 

200 49.79

37    

36.537

1    

(5.324

4) 

22.30

56  

(3.119

7) 

23.337

9    

(2.937

6) 

166.0

478   

131.70

42    

(10.62

6) 

76.897

9  

(5.937

7)  

79.382

4    

(5.753

6) 

250 38.79

8      

27.29    

(4.514

6) 

17.66

61   

(2.751

) 

18.686

9    

(2.553

8) 

127.1

571       

97.7    

(9.041

9) 

60.054

1  

(5.248

1) 

62.395

3    

(5.044

3) 

300 30.43

68    

20.491

9    

(3.843

7) 

14.32

38   

(2.464 

) 

15.332

5    

(2.253

1) 

98.89

2    

72.678

9    

(7.690

7) 

47.318

1   

(4.625 

) 

49.62    

(4.409

2) 

 Note: The bias values are given in parentheses. 

 

Figure 1. Effect of Multicollinearity on the Performance of Estimators for n=50 and 𝑝 = 8 
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Figure 2. Effect of Multicollinearity on the Performance of Estimators for n=300 and 𝑝 = 8 

 

Figure 3. Effect of Sample Size on the Performance of Estimators for 𝜌 = 0.85 and 𝑝 = 8 

 

Figure 4. Effect of Sample Size on the Performance of Estimators for 𝜌 = 0.99 and 𝑝 = 8 

5. Applications 

In this section, we check the performance of the considered estimators with the help of three 

real examples. 

5.1 Example 1: High School Data 
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A real dataset is employed to examine and compare the effectiveness of the proposed estimators 

against the MLE and ridge estimators. Specifically, the hsbdemo dataset is utilized, previously 

employed by Abonazel and Faraghali (2019). This dataset encompasses variables that impact 

the program selection (general, academic, vocational) of high school students. The data set has 

11 variables, including the program of study (y), Gender (x1), Social economic status (x2) (Ses), 

Type of school (x3) (Schtyp), Honors status (x4), Reading test score (x5) (Read), Writing test 

score (x6) (Write), Math test score (x7) (Math), Science test score (x8) (Science), social studies 

score (x9) (Socst), Number of awards (x10) (Awards) in total for 200 students. Their program 

choice can be modeled by taking the study program as the response variable and other variables 

as predictors. Abonazel and Faraghali (2019) showed that the data have multicollinearity as the 

generalized variance inflation factor for seven variables is greater than 10 (see Table 9 of 

Abonazel and Faraghali (2019). 

The coefficients of the MLE, ridge estimator, MLLE, AUMLLE and are calculated using Eqs 

(4), (5), (7) and (9) respectively. The values of MSEs of MLE, ridge estimator, MLLE and 

AUMLLE are computed using Eqs (4a), (6),(8) and (10) respectively. The estimated 

coefficients and MSE (in parentheses) are given in Table 5. Among all estimators, the 

AUMLLE exhibits the smallest MSE, signifying its superior performance. Conversely, the 

MLE displays a larger MSE in comparison to the other estimators. 

 

Table 5: Estimates and MSEs of the MLE, MLLE and AUMLLE for the high school data. 

Variable Estimates    

 MLE 

  (59.2331) 

Ridge 

(31.1152) 

MLLE 

(13.3425) 

AUMLLE 

(13.1181) 

Level: academic     

Intercept -5.6912 -1.4371 -4.3582 -4.1581 

x1 -0.1547 -0.1669 -0.1581 -0.1531 

x21 0.2810 0.0803 0.2145 0.2771 

x21  0.9633 0.6201 0.8501 0.9429 

x3  0.5871 0.6224 0.5956 0.5756 

x4  0.0442 0.0376 0.0421 0.0442 

x5 0.0543 -0.0119 0.0335 0.0543 

x6 0.1001 0.0847 0.0953 0.1001 

x7 -0.1039 -0.0984 -0.1021 -0.1039 

x8 0.0248 0.0215 0.0238 0.0248 

x9 0.5965 0.1248 0.4469 0.5621 

x10 -0.2610 0.1387 -0.1353 -0.2608 

Level: 

vocational 

    

Intercept 4.1460 1.2628 3.2338 3.0104 

x1 0.2529 0.1584 0.2221 0.2485 

x21 1.5057 0.9910 1.3351 1.4793 

x21  0.9643 0.4568 0.7957 0.9275 

x3  -1.3222 -0.8357 -1.1596 -1.2255 

x4  0.0029 0.0178 0.0077 0.0029 

x5 0.0028 0.0245 0.0095 0.0028 

x6 -0.0208 0.0075 -0.0118 -0.0208 

x7 -0.0.0405 -0.0393 -0.0401 -0.0405 

x8 -0.0452 -0.0392 -0.0432 -0.0452 

x9 1.6955 0.7107 1.3768 1.5217 

x10 -0.3469 -0.4212 -0.36806 -0.3463 
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5.2 Example 2: Cancer Data 

The evaluation of estimator performance is conducted utilizing the cancer remission dataset 

previously employed in studies by Lukman et al. (2023), Özkale and Arıcan (2016), and 

Lesaffre and Marx (1993). The data set consists of one binary response 𝑦𝑖 which takes the value 

1 if the patient has complete cancer remission otherwise it takes the value 0. There were five 

explanatory variables including cell index (𝑥1), smear index (𝑥2), infıl index (𝑥3), blast index 

(𝑥4) and temperature (𝑥5). There were in total 27 patients, and of those 9 have experienced 

complete remission. To evaluate the presence of multicollinearity among the explanatory 

variables, Lukman et al. (2023) utilized the condition index. 

The analysis finds a moderate level of multicollinearity, with a CI value of 17.2. A CI value 

falling within the range of 10 to 30 indicates moderate collinearity, while exceeding 30 is 

indicative of severe multicollinearity, as elaborated in Gujrati (1993). The estimated 

coefficients are presented in Table 6. These coefficients for the MLE, ridge estimator, MLLE, 

and AUMLLE are calculated using Equations (4), (5), (7), and (9) respectively. The MSEs for 

the MLE, ridge estimator, MLLE, and AUMLLE are computed using Equations (4a), (6), (8), 

and (10) respectively. It can be seen that the MSE (in the parenthesis of Table 6) of AUMLLE 

and MLLE is small and MLE has the largest value among all the considered estimators which 

depicts that the proposed estimator performs better. 

Table 6: Estimates and MSEs of the MLE, MLLE and AUMLLE for the cancer data 

Variable Estimators 

 MLE 

  (6572.759) 

Ridge 

(1124.387) 

MLLE 

(965.0741) 

AUMLLE 

(963.0328) 

constant 18.3640 -0.5314  2.3803 5.0325 

x1 12.3812 -0.3494 1.6135 3.3948 

x2  -11.7317 -0.2082 -1.8671 -3.3183 

x3 3.66387 0.9277 0.9954 1.3776 

x4 -0.8812 0.4083 0.1199 -0.1583 

x5 -22.2248 -0.7393 -3.6215 -6.5076 

     

5.3 Example 3: Football Data 

For further assessing the performance of the proposed estimators, we examine data concerning 

the performance of Swedish football teams in the top Swedish league for the year 2018. This 

dataset was initially utilized by Qasim et al. (2020a). In total, there are 242 observations in this 

dataset. The dependent variable (𝑌) is full-time results (H: Home win, D: Draw and A: Away 

win) and there are 9 predictors including the pinnacle home win odds (PH), pinnacle draws 

odds (PD), pinnacle away win odds (PA), maximum Odds-portal draw win odds (MD), 

maximum Odds-portal home win odds (MH), maximum Odds-portal away win odds (MA), 

average Odds-portal home win odds (AvgH), average Odds-portal draw win odds (AvgD), and 

average Odds-portal away win odds (AvgA). The influence of these regressors on the response 

variable Y is assessed using the MNL model. It is worth noting that all the VIFs exceed the 

threshold of 10, indicating a multicollinearity problem. Furthermore, on many occasions, the 

correlation coefficients between the predictors are greater than 0.85, which also signals the 

presence of multicollinearity issues. Table 7 demonstrates the values of estimated coefficients 

and MSEs (in the parenthesis). The coefficients of the MLE, ridge estimator, MLLE, and 

AUMLLE are calculated using Equations (4), (5), (7) and (9) respectively. The values of MSEs 

of MLE, ridge estimator, MLLE and AUMLLE are computed using Equations (4a), (6), (8) 

and (10) respectively. The efficient performance of the proposed estimators is evidenced as the 
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results presented through analysis depict the smaller MSE of proposed estimator as compared 

to ridge and MLE. 

Table 7: Estimates and MSEs of the MLE, MLLE and AUMLLE for the football data 

Variable Estimates    

 MLE 

  (110.9167) 

Ridge 

(93.4301) 

MLLE 

(33.2434) 

AUMLLE 

(31.0915) 

Level: D     

Intercept 0.0391 0.1931 0.0988 0.0248 

PH -0.3010 -0.0259 -0.1555 -0.2285 

PD 1.5559 0.0299 0.7448 1.1090 

PA -0.7685 -0.0909 -0.4039 -0.6305 

MH 1.4817 0.1423 0.7762 1.0960 

MD -7.0140 -0.7007 -3.6972 -4.6615 

MA 0.3870 0.2167 0.3056 0.3324 

AvgH -1.1603 -0.0322 -0.5721 -0.8017 

AvgD 4.9816 0.0659 2.4258 3.1529 

AvgA 1.0673 0.2824 0.6291 0.7815 

Level: H     

Intercept 0.7295 0.0341 0.3632 0.4662 

PH 0.3027 0.0888 0.1766 0.2159 

PD 2.7864 0.4740 1.5414 2.0149 

PA -0.6463 0.0666 -0.2613 -0.5406 

MH 1.5831 0.1033 0.7994 1.1240 

MD -2.9121 -0.3741 -1.5720 -1.9748 

MA -0.4690 -0.3822 -0.3999 -0.4092 

AvgH -2.2502 -0.4480 -1.2894 -1.4957 

AvgD -0.5897 -0.4287 -0.4641 -0.3760 

AvgA 2.0409 0.8778 1.3807 1.5292 

 

Various empirical applications have been utilized to emphasize the effectiveness of the 

proposed estimators (MLLE and AUMLLE). The classical MLE has not performed sufficiently 

good when there is multicollinearity in data. To address this very concern, Månsson et al. 

(2018) presented the multinomial ridge regression (ridge) estimator. However, both empirical 

and simulation implementations disclosed that the ridge estimator exhibited smaller MSE when 

compared with MLE, it is subject to bias due to its non-linear relationship with the shrinkage 

parameter. In contrast, both MLLE and AUMLLE are characterized by a linear relationship 

with the shrinkage parameter. Consequently, in simulation and empirical findings, the proposed 

estimators, namely MLLE and AUMLLE, both consistently outperformed the ridge (Månsson 

et al., 2018) and MLE in the sense that they have smaller MSE. Hence, MLLE and AUMLLE 

have performed better than the existing estimators. 

6 Conclusion 

Liu and bias-corrected Liu estimator are derived to address the multicollinearity problem for 

the MNL model. The MSE and Bias of the estimators are acquired along with the optimal 

values of the biasing parameters. Also, we examined the superiority of proposed estimators to 

the MLE. The optimal values of the biasing parameter d are obtained for the MLLE and 

AUMLLE. A Monte Carlo simulation study is conducted to illustrate the performance of the 

MLLE, and AUMLLE against the MLE and ridge estimator by varying factors such as the 
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number of regressors, sample size, levels of the response variable and multicollinearity level. 

MSE and bias are used as performance criteria to evaluate the performance of the proposed 

estimator. Based on simulation results, we concluded that the increase in the level of response, 

the correlation between predictors and the number of regressors harms the performance of 

estimators. However, it is worth noting that the number of observations exerts a positive 

influence on estimator performance, even in scenarios characterized by high levels of 

multicollinearity and an increased number of regressors. Thus, MLLE and AUMLLE are 

superior to the MLE and ridge estimators in nearly all scenarios. The application of real data 

examples demonstrated that the proposed estimators outperformed both the MLE and ridge 

estimators. 
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