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Abstract:

The multinomial logit Liu estimator and the bias-corrected multinomial logit Liu estimator are
proposed as solutions to mitigate the issue of multicollinearity in the multinomial logit model.
Furthermore, the superior properties of these estimators in terms of mean squared error are
presented when compared to both the maximum likelihood estimator and the ridge estimator.
The optimal values of the biasing parameter for the proposed estimators ‘are derived. A
simulation is conducted to demonstrate the effectiveness of proposed estimators against ridge
and traditional MLE using MSE and bias as performance criteria. The performance of
estimators is judged by varying different factors such as the number of values, the number of
predictors, levels of the response variable, and the multicollinearity levels. The result of the
Monte-Carlo simulation and real data applications reveal that proposed estimators have lower
MSE and bias compared to the MLE and ridge estimator.

Keywords: Multinomial logit model, Multicollinearity, Liu estimator, Almost unbiased
estimator.

1. Introduction

In regression models, as Frisch (1934) indicated, multicollinearity exists among predictors
when they have high degree of linear dependence. For the multinomial logit model (MNL), the
unbiased and efficient estimates of parameters are acquired by utilizing the traditional
maximum likelihood estimator (MLE) under the condition that there is no multicollinearity.
However, Abonazel and Farghali (2019) identified that the MLE behave unstable, consequently
producing unbiased yet inefficient estimations in presence of multicollinearity. Therefore, the
confidence intervals are wider, and due to this theoretically important variables become
statistically insignificant in the testing of hypothesis (Qasim et al., 2020a).

In the context of regression models, to alleviate the dire impacts of multicollinearity biased
estimators are utilized. In presence of multicollinearity, shrinkage estimators have been
proposed to generate efficient estimators (Hoerl and Kennard, 1970; Liu, 1993, Saleh et al.,
2019, 2022). Of these, the Liu estimator by Liu (1993) and ridge regression by Hoerl and
Kennard (1970), stand out as being broadly adopted techniques. Liu estimator and the ridge
estimator are distinguished by the fact that the first-mentioned has a nonlinear while the other
one has a linear relation with the shrinkage parameter. Thus, as recognized by Qasim et al.
(2018), the Liu estimator has the superiority of being simple when selecting the value of biasing
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parameter, which makes it a effective technique in real-world applications. In order to model
high-dimensional data, Arashi et al. (2022) worked on the Liu regression following a random
forest. The multicollinearity under linear predictors link for modeling longitudinal data was
recently covered by Taavoni et al. (2023).

For the Bernoulli response model, numerous researchers have proposed biased estimators to
tackle the issue of multicollinearity. Schaefer et al., (1984) introduced the logistic ridge
estimator, while Schaefer (1986) introduced the logistic Stein estimator. Mansson and Shukur
(2011) proposed the shrinkage estimators for the logistic ridge regression, and subsequently,
Mansson et al., (2012) proposed the logistic Liu estimator. Ogoke et al. (2013) presented the
modified logistic ridge estimator, and Inan and Erdogan (2013) introduced the logistic Liu-
Type estimator. Further contributions include the Almost Unbiased Logistic Liu Estimator by
Xinfeng (2015), Asar (2016), Asar and Genc (2016), the almost unbiased ridge logistic
estimator (AURLE) by Wu and Asar (2016), the optimal generalized logistic estimator by
Varathan and Wijekoon (2018), the modified almost unbiased logistic Liu estimator by
Varathan and Wijekoon (2021), Qasim et al., (2021) proposed a beta ridge regression estimator,
Mustafa et al. (2022) worked on the beta ridge regression with different link functions, Hadia
et al. (2022) discussed the logistic ridge estimator with different link functions, and recently,
Lukman et al (2023) proposed the robust biased estimators for the Poisson regression model.
Recently, there have been few studies published demonstrating the advantages of almost
unbiased estimators in generalized linear models. Some noteworthy examples include the
works of Qasim et al. (2020b), Alheety et al. (2021), Amin et al. (2022), Sami et al. (2023) and
Algamal et al. (2023), among others. However, the literature on the biased estimation methods
for the Multinomial Logistic Regression (MLR) models is limited. Only a limited number of
studies have been published that specifically address the issue of multicollinearity, for example,
Escabias (2008), Comminatillo and Lucadimo (2008), El-Dash et al. (2011), and Zahid and
Tutz (2013). Abonazel and Farghali (2019) introduced a Liu-type multinomial logistic
estimator aimed at addressing the challenges posed by multicollinearity.

As far as our knowledge extends, the application of the Liu estimator within the MNL model
has not been explored. This paper sets out to introduce both the MNL Liu estimator and a bias-
corrected multinomial logit Liu estimator, both adapted to address multicollinearity challenges
in the MNL model. The structure of this study is as follows: Section 2 outlines the proposed
estimators, while Section 3 presents the shrinkage parameters associated with these estimators.
In Section 4, we present Monte Carlo simulation studies to illustrate the theoretical findings.
This is followed by Section 5, which showcases the performance of these estimators using real
datasets. Finally, Section 6 provides concluding remarks.

2. Methodology:
2.1 Multinomial Logit Model:

The MNL model is the most widely recognized approach for modeling the relationship between
the multi-categorical response variable and the set of regressors (So and Kuhfeld, 1995; Zahid
and Tutz, 2013). This approach is particularly applicable when dealing with scenarios where
there are m different categories of the dependent variable and m > 2. The MNL specifies

o &XP (%iBn)
4= -,
T Xig exp (xiBn)
where x; is the i™'row of X whichisann x (p + 1) data matrix with p non-stochastic predictors

and Bpisa (p + 1) x 1 vector of regression coefficients. For estimating {3, the most common
method is the MLE, which involves the maximization of the log-likelihood function:

i=1,....nh =1,...,m @9)
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1 :zn:iYih(l_“ih)- (2)

i=1 h=1

This is carried out by equating the first derivative of Eq. (2) to 0. Thus, the MLE can
consequently be acquired by solving the subsequent equation:

—— = Z(Yih — Tp )X; = 0. 3)
=1

Since Eq.(3) is nonlinear concerning B, an iterative weighted least square (IWLS) algorithm
is used to solve the above nonlinear function (See Farghali et al., 2023 for more details):

B MR = (X'WX) 71X Wiz, 4

where W, = diag(m, (1 —m,))and z is a vector where the itelement equals zj, =

log(my, ) + % The asymptotic covariance matrix of the MLE is expressed as follows:
C (B (ML)) E < 621 ) (XIW X)—l
ov — 7= h .
aPB; 0Bk
The asymptotic mean squared error (MSE) equals:
— (ML) , _
MSE(By ) = or[(X'WpX) ™ = B2 B, o (4a)

where Ay; is the jtheigenvalue of the matrix X’ WhX. If X"W;, X is ill-conditioned then Ay; tends

to zero and the values of (X'W;,X)~! becomes large which gives rise to unstable and inflated
MSE of MLE (Chang 2015; Abonazel and Faraghali, 2019, Qasim et al., 2022). As a remedy
to this problem, the new estimators are proposed in the next section.

2.2 Proposed Estimators:
2.2.1 Multinomial logit Liu estimator (MLLE)

In the case of multicollinearity, the most common method is the ridge regression estimator by
Hoerl and Kennard (1970) and is given by B, = (I + k(X'X)™")"*Bumrg. The ridge estimator
for MNL was proposed by Mansson et al. (2018) which is given by
BRR = (X'WyX + kD X' Wy OB o, (5)

1

p+1
where k = <Hp+ﬁ’;1az> . MSE of the ridge estimator for the MNL model is given by
Lot

P+l m P+l m
MSE(p %) = ZZ Ong +k)2 ]Z;(Am +k)” ©

The Liu estimator for the classical linear regression model was introduced by Liu (1993), and
it is presented as follows:

~

Ba = XX+ D1X'X + dDBoLs,
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where d(0 < d < 1) is the shrinkage parameter. The Liu estimator has an advantage over the
ridge regression estimator that is, it is easier to choose d than to choose k because the Liu
estimator is a linear function of d. The Multinomial Logit Liu estimator (MLLE) is suggested
as a cure for the issue of inflated variance of the MLE in the case of multicollinearity. As the

IWLS algorithm is used to find B(MLE), it approximately minimizes the weighted sum of

squared error (WSSE). Therefore, in the WSSE sense, B(MLE) can be considered as the optimal
estimator. For the MNL model, we propose the following Liu estimator:

B MLLE) = (X'W,X + D)1 (X'W,X + dDB (M. @)
Bias(ff MLLD)) = E(f (MLLD)) — BgMLE).
Bias(B MLLE)) = (X'WpX + D)™ (X'WyX + dD)BMEE) — g{MLE)
= [(X'WpX + D L X W, X + dI) — 1]gM,
MSE(B MLLE)) = yar(B MLLE)) 4t pias(B MLLE))pias(F (MLLE)Y',
var(B MLLE)) = (X'WpX + D71 (X'WiX + dD (B MEE) (X' Wi X + dD (X' W X + D72
= (XWX + D IX Wi X + dD (X' Wi X) "1 (X' Wi X + dD (XWX + DL,

Since the scalar MSE( MLLE)) can be obtained by applying the trace operator which is stated
as follows:

p+l m

O\h] + )
MSE(f MLLB)) = Z 2 g O+ 1?2 + (1 —d)? Z Z (}\h] n 1) (8)

j=1 h=1

= v1(d) +v2(d),

where Ay,; are the ordered eigenvalues of the matrix X'W,X and o = V'@, where V' is an
orthogonal matrix whose columns are eigenvectors of the corresponding eigenvalues Ay;.

2.2.2 Bias-corrected MLLE:

Before proceeding with the development of the bias-corrected Liu estimator for the MNL
model, it is essential to establish the definition of the almost unbiased (bias-corrected)
estimator:

Definition. (Xu and Yang, 2011 and Amin et al., 2022) Suppose that {8 is a biased estimator of
B with, Bias (B) = E(B)— B = CB, which implies that E(§ — CB) = B, then the almost
unbiased estimator based on a biased estimator {8 is definedasp = —CB = (I - C)B.

Now, we develop an almost unbiased MLLE (AUMLLE) for the MNL model:
Bias(B MM5)) = —(1 — d)(X' W, X + D)1 BMP
E(AUMLLE) — (1 + (XIWhX + I)—l(l _ d))E(MLLE)

= [ — (X'WpX + )72(1 — d)?)B M) (9)
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Bias(E(AUMLLE)) — _(XIWhX + I)—Z(l _ d)ZB‘ElMLE)

% ar( B (AUMLLE))
= [I = (X'WpX + D)72(1 — d)*Jwar(B M )1
— (X'WpX + D72(1 - d)?]

=1 -X'W X+ D21 — ) X'W, X)) I — (X' WX + D72(1 — d)?].
The scalar MSE of the AUMLLE for the MNL model is given by:

2
P+l m (1 — (A +d))2)2 p+1 m
MSE( (AUMLLE)) = Z z h] +(1-a)* z Z 7 + T
=ih= ( hj )
MSE(E(AUMLLE))
P+l m 2 2 p+l m
(An; +d) (A +2—4d) . an;’
7 +(1-4d) P SEE— (10)

A Anj(Anj +1) S (A +1)

where 4,; are the ordered eigenvalues of the matrix X'W,X and a = V'f, where V' is an
orthogonal matrix whose columns are eigenvectors of the corresponding eigenvalues Ap,;.

2.3 Superiority of the new estimators

The performance of the proposed estimators is compared with the MLE. The AUMLLE has a
smaller MSE as compared to the MLLE under some conditions. The following lemma is
required to prove the theorem.

Lemma 1: Let two linear estimators of « are @; = A;X,i = 1,2. Suppose that D = Cov(@,) —
Cov(@,) is p.d. then A= MSE(@;) — MSE (&) is n.n.d iff d,(D + dya,)a, < 1, where q;
denotes the bias vector of &;.

Theorem 1: Under the MNL model, we have ||Biasy..z||> — ||BiasAU,\4LLE||2 >0 for 0 <
d<1.

Proof:

. . 2 +1 anj?
||BlaSMLLE||2 - ||Bla5AUMLLE|| =(d- 1)2 Zp het _] >-(1—
(Apj+1)

2
1 Xhj
)4 P+ J
) Z h l(lhj+1)4'

2 p+1 an® o N2 anj’
=1 =472 ((lhj+1)2 d-d (lhj+1)4>

- p+1 (Anj+1)?-(1-a)*
=(1 - 2 T0 By o (B

2 p+1 (lhj+d)(/1hj—d+2)
=(1 = ) P T apy? (B D)

It can be easily seen that the difference of ||Biasy ¢||* — ||BiaSAUMLLE||2 is positive, when
0<d<1.
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2.4 Comparison between MLLE and AUMLLE

Consider

A= MSE(p MLLE)) — MSE (B (AVMLLE)) = D + biasy, sbiasy,.e —
biassymrrebiasaymiie, (11)

whereD = {(X'W,X + D)~1(X' WX + dD) (X' Wy X)L (X' Wi X + dD) (X' W, X + 1)~1} —

(I = XWX+ D721 — d)?](X'W, X)) I — (X'W,X + )72(1 — d)?]}. The following
theorem gives necessary and sufficient conditions for g (AUMLLE) tg be superior to § (MLLE),

Theorem 2: Under the MNL model, if ay;? 21;1'123
hj

d,thenp (AUMLLE) js superior to f MLLE) in the MSE sense namely MSE(p (MLLE)) —
MSE(E(AUMLLE)) >0

, 0<m<1, where m=1-—

Proof: From Equations (6) and (8), the difference in scalar MSE is:
MSE(E (MLLE)) _ MSE(E (AUMLLE))

o (/1}1] + d)z AR ahjz
j=1 h=1lhj(lhj + 1) j=1h=1 (AhJ + 1)
+1 +1
pz: i (Anj+ )" (A + 2= d)z ) pz:i
- 4
j=1h=1 Ahj(’lhj + 1) j=1j=1 (Ahj + 1)

Zi WpjApj (1 wh]){/lh]whj(l'l'th) ah](l_whj)(z-l_wh])}

Anj

1-d 1

* —_—
(Ahﬁl),and Apj = —

where wy,; =
hj an;

We can see that 0<apj=wp; <1 and A,; >0, then MSE(BMHLE)) —
MSE(B\(AUMLLE)) >0 |ﬁ:Ah](JJh](1 + (J.)h]) - a’;‘U(l - a)h])(Z + (Uh]) =>0or
(Ah] + a;:j)mz + ()lh] + (Z;])(/lh] + 1)771 - 20.’;;](1 — wh])(/lh] + 1)2 >0, where m =

has two roots given by

Apj+1 Anj+9ay A i41 Api+oat ;
my = —( k] ) o — *h] a.nd m, = —( h] ) -1+ — *h]
2 )]'hj+ahj 2 Ahj+ahj

L . . Anj+2
It is evident that m; < 0 and m;<m,. Since 0 < m < 1, we acquire ahjz >

21}1]‘+3 !

Then for 0 <m < 1, MSE(B MLLE)) — MSE(p (AUMLLE)) > 0,

3. Selection of shrinkage parameter
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We can obtain the optimal value of d by minimizing the MSE of the MLLE and the
AUMLLE estimator as follows:

e Taking the first derivative of MSE(B (MLLED) concerning d and equating it to zero, we

get:
p+1

Z i {i (Anj+d) 201 - d)ahjz} _
: Anj (Apj + D% (Ay; + D*

j=1h=1

Solving the above equation, we get
p+iom Anj(@n®—1)
J=L A= 0 (A + 1)?
j=1 h=1 Ah}(lh] + 1)2

dyiie =
And taking the first derivative of MSE(p“UYMLLE)) concerning d and equating it to O we

get:
p+1 m
ZZ{i<1 _ (1 —a)? ) 1-d) _4(1 _d)3ahj2} iy
J=1h=1 i (Anj + 1)?) (Anj + 1) (Apj +1)* '

Solving this equation for d we get:

21'7+1 m_ 1
J=1 2h=12p i(Ap j+1)2
sp+igm Gnjnj*+0”
j=1 2h=17, :pj+ 0%

daymrLe =1 —

respectively. Since dy;.r and dyypmr depend on the unknown parameter aj,; , so, we replace
them with their estimates and the estimated values are

piiom Anj(@° — 1)
j=14h=1 Ah}(AhJ + 1)2

CiMLLE =
~ 2
sp+igm  Anilnj” +1)
Jj=1 h=lﬂ.hj(lhj + 1)2
And
Zp+1 m 1
~ Jj=1 h:]').hj(lhj+1)2
daymire =1 -

~ 2
Z?"—l m (Ahjahj +1)
Jj=1 hzl).hj(/lhj+1)4

4, Monte Carlo Simulation
4.1 Simulation Layout

The simulation study is conducted to assess and compare the performance of the MLLE, and
AUMLLE based on dy; ;g and dayuyeWith ML estimator and ridge estimator. In this study,
the dependent variable of the MNL model is generated using pseudo-random numbers from the
multinomial regression model, where
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e (ab)
h Zznzlexp (xiﬁh)'

The parameter values are chosen so that 8’8 = 1, which is a generally used constraint in this
field see Kibria(2003), Asar (2016) and Mannson et al.(2018). Following (Suhail et al., 2020),
(Babar & Chand, 2022), and (Wasim et al., 2023), the correlated explanatory variables have
been generated as:

i=1,....nh=1,....,m

xij = (1 - pz)l/ZZij + ,DZi(j+1) ) i = 1,2, W n, ] = 1,2, e, P

where z;; are the pseudo-random numbers produced from the normal distribution. The factors
we choose to vary are the correlation between the predictor variables (p), the number of
predictor variables (p), the sample size(n), and the levels of the outcome variable (m). The
scenarios for the simulation study are summarized in Table 1:

Table 1: Parametric conditions of the simulation layout

n 50 100 150 200 300
p 0.80 0.85 0.90 0.95 0.99
p 2 4 8 — —
m 3 5 — — —

To investigate whether the MLLE and AUMLLE estimators are better than the ML estimator,
MSE is computed using the following equation:

X8 — B B - B)
R )
where [?j is the estimator of 8; obtained from the MLLE, AUMLLE, MLE and ridge estimator.

R = 2000 indicating the number of replicates used in the Monte Carlo simulation. The values
in parentheses in all tables represent the Bias of the estimators. R software was used to run the
simulation.

MSE =

4.2 Results and Discussion:

Tables 2-4 illustrate the simulated MSE values for the proposed estimators and the MLE,
considering various factors we deliberately varied. The performance evaluation encompasses
AUMLLE, MLLE, ridge, and MLE, with the variations encompassing n (sample size), p
(number of explanatory variables), m (levels of the response variable), and p (degree of
correlation). Specifically, Table 2 showcases MSEs for p =2 with varying n, m, and p.
Similarly, Table 3 presents MSEs for p=4, and Table 4 depicts MSEs for p=8.

Across all scenarios, the MLE exhibits the highest MSE values in comparison to ridge, MLLE,
and AUMLLE, indicative of the superior performance of the proposed estimators. Furthermore,
a consistent trend is observed where increased n yields decreased MSE values for all estimators
(refer to Figures 1-2), highlighting the significant positive impact of larger sample sizes on
estimator performance.

As p escalates while keeping m and p constant, the MSE of all estimators increases, signifying
a detrimental impact on estimator performance. However, it's noteworthy that the adverse

Migration Letters



138 Liu And Bias-Corrected Liu Estimator For The Multinomial Logit Model

impact of p can be mitigated by augmenting the sample size, as evidenced by the simulation
outcomes. It's noteworthy that MLE experiences the greatest influence from rising p.

Moreover, with increasing levels of the response variable (m), the MSE and Bias values of all
estimators rise in tandem, holding p and p constant. The escalation in MSE and Bias is
particularly pronounced for MLE and ridge estimators when the response variable levels
increase. Similarly, augmenting the number of explanatory variables elevates the MSE and
Bias across all estimators. The deleterious effect of heightened p is more pronounced when m
and p take on larger values with a smaller n. Notably, the performance of MLE is compromised
as the number of regressors increases. Consequently, for given n, increases in m, p, and p inflate
the MSE and Bias values for all estimators. Specifically, the highest MSE value is observed
when n = 50, p=8, m=5, and p = 0.99, while the lowest MSE value occurs when n = 300, p=2,
m =3, and p =0.80. Overall, the simulation study consistently demonstrates the superior
performance of the proposed estimators in comparison to MLE, with MLLE vyielding the
smallest MSE values across all scenarios.

Table 2: MSE values and biases of MNL estimators when p = 2

n m=3 m=
MLE Ridge MLLE AUML MLE Ridge MLLE AUML
LE LE
p =0.80
50 2.0907 11416 1.0125 1.0598 5.2891 2.8027 2.4184 2.6624
(0.628 (0.566 (0.5128 (0.988 (0.8689 (0.7395
9) 6) ) 1) ) )
100 0.5653 0.3949 0.3406 0.3478 1.8924 1.1292 0.9963 1.109
(0.223 (0.298 (0.2597 (0.438 (0.5121 (0.4171
2) 5) ) 3) ) )
200 04765 0.3181 0.2735 0.2738 1.4821 0.8846 0.7634 0.8338
(0.170 (0.256 (0.225) (0.339 (0.4337 (0.354)
2) 1) 2) )
250 0.4332 0.2804 0.2379 0.2362 1.0752 0.6773 0.5727 0.6192
(0.146  (0.232 (0.2053 (0.249 (0.366) (0.2971
8) 8) ) 4) )
300 0.4042 0.2252 0.1969 0.1924 1.1327 0.6821 0.5709 0.6148
(0.115 (0.195 (0.1735 (0.251 (0.3693 (0.3008
2) 6) ) 9) ) )
p = 0.85
50 1.7017 0.9419 0.8434 0.877 6.4725 3.4817 2.9955 3.2595
(0.499 (0.492 (0.4314 (1.128 (0.9918 (0.8483
8) 9) ) 9) ) )
100 0.9628 0.5725 0.4997 0.5154 1837 1.6242 1.7829
(0.322 (0.370 (0.3256 3.4445 (0.688 (0.6815 (0.5628
8) 3) ) 5) ) )
200 0.717 0.419 0.3598 0.3634 2.1759 1.2047 1.055 1.1602
(0.230 (0.306 (0.2713 (0.479 (0.5351 (0.4424
6) 1) ) ) ) )
250 0.4352 0.27 0.2307 0.2284 13229 0.799 0.6818 0.7417
(0.139 (0.225 (0.1983 (0.305 (0.4083 (0.3338

7) 1) ) 7) ) )
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300 0.4188 0.2589 0.2130 0.2158 0.3597 0.2417 0.2001 0.1978
0.2216 (0.21) (0.2150 (0.124 (0.2169 (0.1895
) 8) ) )
p=0.90
50 48994 25521 20503 21133 8.8407 4.7392 3.8815 4.1675
(1.147 (0.867 (0.8135 (1.479 (1.1974 (1.0653
1) 6) ) 5) ) )
100 0.5127 0.3402 0.2847 0.2921 35857 19611 1.7316 1.9274
(0.201 (0.282  (0.2502 (0.773 (0.738) (0.623)
4) ) ) 2)
200 0.5543 0.3589 0.3006 0.3095 2.0099 1.1327 0.9979 1.1134
(0.216 (0.292 (0.26) (0.482 (0.5213 (0.4339
4) 6) 4) ) )
250 0.4774 0.3238 0.271 0.2791 1.6479 0.9937 0.8616 0.9523
(0.194 (0.2455 (0.399 (0.4784 (0.3927
) §0.270 ) 5) ) )
300 0.4108 0.295 0.2431 0.2484 1.7162 0.9966 0.8684  0.9561
(0.175 (0.242 (0.2312 (0.412 (0.483) (0.4013
7) 8) ) 3) )
p =0.95
50 54215 2.8531 2.2425 2.313 26.244 15.273 10.806 10.9836
(1.237 (0911 (0.8622 1 (3117 1 (2.0667
7) 8) ) 6) (2.1529 )
)
100 2.8559 14228 1.2282 12808 8.1979 4.3359 35811 3.8501
(0.796 (0.661 (0.6126 (1433 (1.1611 (1.0329
5) 3) ) 3) ) )
200 15001 0.7659 0.6784 0.7105 3.3036 1.7726 15667 1.7476
(0489 (0.481 (0.4375 (0.736  (0.7114 (0.5997
) 3) ) 8) ) )
250 0.7358 0.4347 0.3693 0.3837 3.2763 17429 15373 1.7186
(0.275 (0.336  (0.3001 (0.731 (0.7021 (0.5916
1) ) ) ) ) )
300 0.7651 0.4615 0.3959 0.4143 24459 13422 1.1905 1.3353
(0.298 (0.351 (0.3179 (0.589 (0.6034 (0.5078
1) 4) ) 9) ) )
p =0.99
50 22.062 13.684 8.4651 8.4749  100.43 69.639 (40.685 40.6568
2 8 (1.899 (1.878) 86 (7.192 2) (4.2782
(3.079 1) 8) (4.3125 )
4) )
100 12.297 6.8417 4.7819 4.8103 39.956 24.257 16.770  16.7553
1 (2.154 (1.418 (1.3885 2 5 9 (2.7143
7) 2) ) (4134 (2.7741 )
2) )
200 57754 2.8531 2289 2.3419 19.441 10.854 8.2149 8.3365
(1.306 (0.969 (0.9297 8 (2.609 (1.9246 (1.8297
9) 6) ) 6) ) )
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250

300

5.1394

3.9958

2.5407
(1.216
3)
2.0245
(1.056
5)

2.0629
(0.915
1)
1.7149
(0.836
7)

21109 15958 8.6349
(0.8725 9 (2.280
) 6) )
1750 13422 7.2117
(0.7907 5 (2.041
) 6) )

6.626  6.8042
(1.7029  (1.5969

)

56077 5.8361
(15516  (1.441)

Note: The bias values are given in parentheses.

Table 3: MSE values and biases of MNL estimators when p = 4

n m=3 m=
MLE Ridge MLL AUML MLE Ridge MLLE AUML
E LE LE
p =0.80
50 47167 27177 2357 25372 17.114 10.653 8.0486 8.7291
(1.028 4 (0.8081 5 24548 1.6847 1.511
4)) (0.88 )
06)
100 23636 1.4012 1.251 1.3788 6.8466 3.9878 3.5429 3.9794
(0.585 3 (0.515) (1.190 (1.047 (0.8017
) (0.61 5) 1) )
84)
200 0.85 0.6124 0.516 0.551 4.0409 2.4518 2.2452 2.5307
(0.207 7 (0.3186 (0.714 (0.810 (0.678)
1) 0.37 ) 2) 4)
74)
250 0.7354 0.5404 0.450 0.4838 2.0135 2.0135 1.1799 1.3259
(0.183 7 (0.2814 (1.365 (0.560 (0.4631
6) 034 ) 7) 1) )
51)
300 0.5785 0.4486 0.370 0.3925 1.7473 1.2002 1.0263 1.1674
(0.144 7 (0.2515 (0.322  (0.507 (0.4007
2) (0.30 ) 6) 9) )
75)
p = 0.85
50 5.842 3.4399 2.851 3.0747 26.335 17.211 11.980 12.794
(1.253 6 (0.9025 1 6 1 1
4) 0.99 ) (3.336  (2.118 (1.9598
36) ) 1) )
100 2.3849 1.4086 1.258 1.3804 9.5108 5.4412 4.8248 5.3596
(0.578 4 (0.5252 (1.502 (1.28) (1.121)
5) (061 ) 7)
85)
200 1.294 0.8458 0.730 0.804 3.7664 2.3116 2.1066 2.3994
(0331 9 (0.3741 (0.690 (0.786 (0.6521
) 046 ) 7) 2) )

04)
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04)
1.874

(0.79
04)
0.965

(0.55
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53)
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(0.3035
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(0.2751

)
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(1.225)

2.0593
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(0.404)
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(0.3566

)

9.329
(1.8201
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(1.1442

)

1.8613
(0.6729

)
1.4791
(0.5482

)

1.3065
(0.5081

)

2.8511 1.7927

(0.524
8)
24764 15761
(0.463
)
p = 0.90
36.154 24.287
3 2
(4.11)
10.918 6.3662
4 (1.722
)
49134 2.8924
(0.869
1)
4535  2.6809
(0.809
)
3.6341 2.2224
(0.673
)
p =0.95
55.538 39.411
9 6
(5.466
9)
23.619 14.721
6 (3.074
9)
10.534 6.1114
1 (1.669
7)
7.9676 4.6037
(1.333
4)
7.968  4.5845
(1.337
3)

1.6013
(0.660
8)

1.3957

(0.604
7)

15.952
(2.507
5.4425
(1.381

2.6309
(0.893

2.4306
(0.855

2.0133
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9)
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5.2996
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4.0252
(1.165

4.0293
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5)
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p =0.99
50 105.32 88.113 44.02 44.284 519.12 47187 21543 216.00
62 8 44 3 15 16 33 97
(8.518 (4.44 (44115 (20.05 (9.909 (9.8602
9) 37) ) 51) 9) )
100 43.874 32.616 18.89 19.148 138.62 109.31 61.414 62.011
2 6 12 (2.861) 4 03 9 2
(5.103 (2.92 (9.600 (5.372 (5.2883
6) 75) 6) 3) )
200 18.805 12.200 8.425 8.7189 50.152 34.086 23.252 24.101
2 6 5 (1.8415 4 3 8 8
(2971 (193 ) (5.112 (3.265 (3.1336
2) 99) 3) 8) )
250 14.666 9.2066 6.640 6.9547 51.493 35.284 23.812 24.58
8 (2514 5 (1.5861 8 6 9 (3.18)
6) (1.69 ) (5.209 (3.315
63) 4) 3)
300 13.273 8.0937 5.934 6.2385 39.164 25.908 18.078 18.844
4 (2325 3 (1.4739 1 4 7
5) (158 ) (4.350 (2.85) (2.7011
74) 7 )
Note: The bias values are given in parentheses.
Table 4: MSE values and biases MNL estimators when p = 8.
n m=3 m=
MLE Ridge MLLE AUML MLE Ridge MLLE AUML
LE LE
p = 0.80
50 9.148 6.137 4245 46194 6329 46.618 27.789 29.851
3 (2.397 3 (0.747 99 5 6 9
3) (0.844 5) (5.835 (3.003 (2.781
5) 3) 6) 1)
100 5.029 29617 2709 3.0211 17.16 10.191 8.947 10.015
8 (0.832 2 (0.762 69 9 (1.670  (1.409
) (0.895 3) (2.107 1) 5)
6) 2)
200 1984 13951 1.193 1.3693 6.560 4.0825 3.7618 4.3972
(0.320 8 (0417 3 (0.878 (0.990 (0.737
2) (0.562 1) 4) 1) 1)
8)
250 1583 1.1648 0.978 1.1312 5.445 3465 3.1579 3.7047
1 (0.259 3 (0350 9 (0.720 (0.894 (0.657
3) (0.491 ©6) 9) 7) 6)
2)
300 1.345 1.0014 0.834 0961 3975 2.6763 2.3771 2.8088
1 (0.223 2 (0.306 4 (0.521 (0.746 (0.529
4) (0436 7) 9) 1) 4)
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Figure 4. Effect of Sample Size on the Performance of Estimators for p = 0.99 and p = 8

5. Applications

In this section, we check the performance of the considered estimators with the help of three
real examples.

5.1 Example 1: High School Data
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A real dataset is employed to examine and compare the effectiveness of the proposed estimators
against the MLE and ridge estimators. Specifically, the hsbdemo dataset is utilized, previously
employed by Abonazel and Faraghali (2019). This dataset encompasses variables that impact
the program selection (general, academic, vocational) of high school students. The data set has
11 variables, including the program of study (y), Gender (x1), Social economic status (xz) (Ses),
Type of school (x3) (Schtyp), Honors status (x4), Reading test score (xs) (Read), Writing test
score (xs) (Write), Math test score (x7) (Math), Science test score (xs) (Science), social studies
score (Xg) (Socst), Number of awards (X10) (Awards) in total for 200 students. Their program
choice can be modeled by taking the study program as the response variable and other variables
as predictors. Abonazel and Faraghali (2019) showed that the data have multicollinearity as the
generalized variance inflation factor for seven variables is greater than 10 (see Table 9 of
Abonazel and Faraghali (2019).

The coefficients of the MLE, ridge estimator, MLLE, AUMLLE and are calculated using Eqs
(4), (5), (7) and (9) respectively. The values of MSEs of MLE, ridge estimator, MLLE and
AUMLLE are computed using Eqgs (4a), (6),(8) and (10) respectively. The estimated
coefficients and MSE (in parentheses) are given in Table 5. Among all estimators, the
AUMLLE exhibits the smallest MSE, signifying its superior performance. Conversely, the
MLE displays a larger MSE in comparison to the other estimators.

Table 5: Estimates and MSEs of the MLE, MLLE and AUMLLE for the high school data.

Variable Estimates

MLE Ridge MLLE AUMLLE

(59.2331) (31.1152) (13.3425) (13.1181)

Level: academic
Intercept -5.6912 -1.4371 -4.3582 -4.1581
X1 -0.1547 -0.1669 -0.1581 -0.1531
X21 0.2810 0.0803 0.2145 0.2771
X21 0.9633 0.6201 0.8501 0.9429
X3 0.5871 0.6224 0.5956 0.5756
X4 0.0442 0.0376 0.0421 0.0442
Xs 0.0543 -0.0119 0.0335 0.0543
X6 0.1001 0.0847 0.0953 0.1001
X7 -0.1039 -0.0984 -0.1021 -0.1039
Xs 0.0248 0.0215 0.0238 0.0248
Xg 0.5965 0.1248 0.4469 0.5621
X10 -0.2610 0.1387 -0.1353 -0.2608
Level:
vocational
Intercept 4.1460 1.2628 3.2338 3.0104
X1 0.2529 0.1584 0.2221 0.2485
X21 1.5057 0.9910 1.3351 1.4793
X21 0.9643 0.4568 0.7957 0.9275
X3 -1.3222 -0.8357 -1.1596 -1.2255
Xa 0.0029 0.0178 0.0077 0.0029
Xs 0.0028 0.0245 0.0095 0.0028
X6 -0.0208 0.0075 -0.0118 -0.0208
X7 -0.0.0405 -0.0393 -0.0401 -0.0405
Xs -0.0452 -0.0392 -0.0432 -0.0452
Xog 1.6955 0.7107 1.3768 1.5217

X10 -0.3469 -0.4212 -0.36806 -0.3463
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5.2 Example 2: Cancer Data

The evaluation of estimator performance is conducted utilizing the cancer remission dataset
previously employed in studies by Lukman et al. (2023), Ozkale and Arican (2016), and
Lesaffre and Marx (1993). The data set consists of one binary response y; which takes the value
1 if the patient has complete cancer remission otherwise it takes the value 0. There were five
explanatory variables including cell index (x;), smear index (x;), infil index (x3), blast index
(x4) and temperature (xs). There were in total 27 patients, and of those 9 have experienced
complete remission. To evaluate the presence of multicollinearity among the explanatory
variables, Lukman et al. (2023) utilized the condition index.

The analysis finds a moderate level of multicollinearity, with a Cl value of 17.2. A Cl value
falling within the range of 10 to 30 indicates moderate collinearity, while exceeding 30 is
indicative of severe multicollinearity, as elaborated in Gujrati (1993). The estimated
coefficients are presented in Table 6. These coefficients for the MLE, ridge estimator, MLLE,
and AUMLLE are calculated using Equations (4), (5), (7), and (9) respectively. The MSEs for
the MLE, ridge estimator, MLLE, and AUMLLE are computed using Equations (4a), (6), (8),
and (10) respectively. It can be seen that the MSE (in the parenthesis of Table 6) of AUMLLE
and MLLE is small and MLE has the largest value among all the considered estimators which
depicts that the proposed estimator performs better.

Table 6: Estimates and MSEs of the MLE, MLLE and AUMLLE for the cancer data

Variable Estimators
MLE Ridge MLLE AUMLLE
(6572.759) (1124.387) (965.0741) (963.0328)
constant 18.3640 -0.5314 2.3803 5.0325
X1 12.3812 -0.3494 1.6135 3.3948
X2 -11.7317 -0.2082 -1.8671 -3.3183
X3 3.66387 0.9277 0.9954 1.3776
Xa -0.8812 0.4083 0.1199 -0.1583
Xs -22.2248 -0.7393 -3.6215 -6.5076

5.3 Example 3: Football Data

For further assessing the performance of the proposed estimators, we examine data concerning
the performance of Swedish football teams in the top Swedish league for the year 2018. This
dataset was initially utilized by Qasim et al. (2020a). In total, there are 242 observations in this
dataset. The dependent variable (Y) is full-time results (H: Home win, D: Draw and A: Away
win) and there are 9 predictors including the pinnacle home win odds (PH), pinnacle draws
odds (PD), pinnacle away win odds (PA), maximum Odds-portal draw win odds (MD),
maximum Odds-portal home win odds (MH), maximum Odds-portal away win odds (MA),
average Odds-portal home win odds (AvgH), average Odds-portal draw win odds (AvgD), and
average Odds-portal away win odds (AvgA). The influence of these regressors on the response
variable Y is assessed using the MNL model. It is worth noting that all the VVIFs exceed the
threshold of 10, indicating a multicollinearity problem. Furthermore, on many occasions, the
correlation coefficients between the predictors are greater than 0.85, which also signals the
presence of multicollinearity issues. Table 7 demonstrates the values of estimated coefficients
and MSEs (in the parenthesis). The coefficients of the MLE, ridge estimator, MLLE, and
AUMLLE are calculated using Equations (4), (5), (7) and (9) respectively. The values of MSEs
of MLE, ridge estimator, MLLE and AUMLLE are computed using Equations (4a), (6), (8)
and (10) respectively. The efficient performance of the proposed estimators is evidenced as the
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results presented through analysis depict the smaller MSE of proposed estimator as compared
to ridge and MLE.

Table 7: Estimates and MSEs of the MLE, MLLE and AUMLLE for the football data

Variable Estimates

MLE Ridge MLLE AUMLLE

(110.9167) (93.4301) (33.2434) (31.0915)

Level: D
Intercept 0.0391 0.1931 0.0988 0.0248
PH -0.3010 -0.0259 -0.1555 -0.2285
PD 1.5559 0.0299 0.7448 1.1090
PA -0.7685 -0.0909 -0.4039 -0.6305
MH 1.4817 0.1423 0.7762 1.0960
MD -7.0140 -0.7007 -3.6972 -4.6615
MA 0.3870 0.2167 0.3056 0.3324
AvgH -1.1603 -0.0322 -0.5721 -0.8017
AvgD 49816 0.0659 2.4258 3.1529
AvgA 1.0673 0.2824 0.6291 0.7815
Level: H
Intercept 0.7295 0.0341 0.3632 0.4662
PH 0.3027 0.0888 0.1766 0.2159
PD 2.7864 0.4740 1.5414 2.0149
PA -0.6463 0.0666 -0.2613 -0.5406
MH 1.5831 0.1033 0.7994 1.1240
MD -2.9121 -0.3741 -1.5720 -1.9748
MA -0.4690 -0.3822 -0.3999 -0.4092
AvgH -2.2502 -0.4480 -1.2894 -1.4957
AvgD -0.5897 -0.4287 -0.4641 -0.3760
AvgA 2.0409 0.8778 1.3807 1.5292

Various empirical applications have been utilized to emphasize the effectiveness of the
proposed estimators (MLLE and AUMLLE). The classical MLE has not performed sufficiently
good when there is multicollinearity in data. To address this very concern, Mansson et al.
(2018) presented the multinomial ridge regression (ridge) estimator. However, both empirical
and simulation implementations disclosed that the ridge estimator exhibited smaller MSE when
compared with MLE, it is subject to bias due to its non-linear relationship with the shrinkage
parameter. In contrast, both MLLE and AUMLLE are characterized by a linear relationship
with the shrinkage parameter. Consequently, in simulation and empirical findings, the proposed
estimators, namely MLLE and AUMLLE, both consistently outperformed the ridge (Mansson
et al., 2018) and MLE in the sense that they have smaller MSE. Hence, MLLE and AUMLLE
have performed better than the existing estimators.

6 Conclusion

Liu and bias-corrected Liu estimator are derived to address the multicollinearity problem for
the MNL model. The MSE and Bias of the estimators are acquired along with the optimal
values of the biasing parameters. Also, we examined the superiority of proposed estimators to
the MLE. The optimal values of the biasing parameter d are obtained for the MLLE and
AUMLLE. A Monte Carlo simulation study is conducted to illustrate the performance of the
MLLE, and AUMLLE against the MLE and ridge estimator by varying factors such as the
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number of regressors, sample size, levels of the response variable and multicollinearity level.
MSE and bias are used as performance criteria to evaluate the performance of the proposed
estimator. Based on simulation results, we concluded that the increase in the level of response,
the correlation between predictors and the number of regressors harms the performance of
estimators. However, it is worth noting that the number of observations exerts a positive
influence on estimator performance, even in scenarios characterized by high levels of
multicollinearity and an increased number of regressors. Thus, MLLE and AUMLLE are
superior to the MLE and ridge estimators in nearly all scenarios. The application of real data
examples demonstrated that the proposed estimators outperformed both the MLE and ridge
estimators.
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