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Abstract.  

In this work, a number of k − fractional integrals are introduced on the basis of some classical 

fractional integrals like Riemann-Loiuville (RL), Hadamard (H), Kober (K) and Ilyas-Farid 

(IF) integrals with collaboration of extended k −Gamma and k − Beta functions. The 

semigroup and the commutative properties of the newly defined RLK (Riemann-Liouville & 

Kober), HK, extended HK and IFK type k − fractioanl integrals are proved. 
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1. INTRODUCTION 

The Fractional Calculus (FC) broadens the notion of classical calculus by focusing on 

integration and differentiation of non-integer orders. The idea of fractional operators was 

developed almost at the same time as classical calculus. The concept of fractional derivatives 

was first mentioned by great philosopher Guillaume de l'Hôpital in a letter to Gottfried Wilhelm 

Leibniz, one of the founders of calculus, in 1695. In 1730s, Leonhard Euler and Joseph-Louis 

Lagrange worked on the concept, but it didn't gain much attention. Later on, in 1819, Niels 

Henrik Abel introduced the idea of fractional integrals (FIs), but his work was not widely 

recognized. During the region 1820-1830, Siméon Denis Poisson and Augustin-Louis Cauchy 

made significant contributions to the field.  Meanwhile Bernhard Riemann's work on the RL 

integral laid the foundation for modern fractional calculus in 1858. Mathematicians like Oliver 

Heaviside, Henri Léon Lebesgue and Paul Lévy made important contributions in the early 20th 

century. The development of modern fractional calculus began, led by researchers like 

Stanisław Marcin Ulam, Mark Kac and Enrico Scalas during the phase 1960-1970. Fractional 

calculus has seen significant growth, with applications in various fields, including physics, 

engineering, signal processing and more in the current era (Machado et al., 2011; Srivastava, 

1989; Das, 2011).  

Fractional calculus emerged as a response to the limitations of classical calculus in 

modeling real-world phenomena. The main reasons for its development are many natural 

processes, like diffusion, relaxation and oscillations, exhibit non-integer order behavior, which 

classical calculus couldn't accurately describe. FC can capture the "memory" and non-local 

effects in systems, where the current state depends on past states or distant locations. It helps 

to describe fractals and self-similar structures, common in nature, by using non-integer 

dimensions and extends classical calculus to handle more complex problems, providing a more 

comprehensive framework for mathematical modeling (Torres & Malinowska, 2012; Sabatier 

et al., 2007). FC was driven by the need to model real-world problems in fields like physics, 

engineering and signal processing, where classical calculus was insufficient. By addressing 

these limitations, FC has become a powerful tool for modeling and analyzing complex systems, 

enabling new insights and applications across various disciplines (Butzer & Westphal, 2000; 

Baleanu, 2012; Yang & Zhang, 2022). 
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Lacroix explored the idea of extending this differentiation rule to cases where j and k could 

be a non-integer (fractional) value as  
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where the  Gamma function ( ) is a key mathematical tool in FC, providing a way to 

generalize factorials to non-integer values. It is defined as 
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(Podlubny, 1994). 

1.1 Fundamental Theorem of Calculus (FTC) 

The Fundamental Theorem of Calculus bridges the gap between differentiation and integration, 

revealing a deep connection between these two fundamental concepts in calculus. 

If   is continuous on [ , ]p q  and differentiable on ( , )p q , then  

 
( ) ( ).

x

x

p

D t dt x =  (4) 

This relation is termed as 1st  FTC. 

If   is continuous and differentiable function on a closed interval [ , ]p q . Then   
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This result is known as 2nd  FTC. 

Let ( , )x  be a function such that the integral 
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are well-defined and differentiable, where the limits of integration, ( )a   and ( )b  , and the 

integrand, ( , )x  , are functions of the parameter  . If ( , )x   and 
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be differentiable with respect to  , then  
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which is referred as the Cauchy Repeated Integal Formula. Likewise one may see that  
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Following the idea of these n -fold integrals  (6) and  (7), the FIs  (8) & (9) and (10) & (11) are 

defined.  

1.2 Definitions (The Classical Fractional Integrals) 

The left and right RL FI of order 0   of a function ( )t  are defined as 
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respectively (Farid, 2021). 

The left and right Hadamard FI of order  0   of a function ( )t  are defined as 
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respectively.  

For a function ( )t and for 0, ,a b   the left and right Kober FI of order 0   are 

given by 
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respectively (Hanna et al., 2020). 

Left and right FI s with expronential functions in the kernel, also known as Ilyas-Farid 

FIs, of order 0  , are defined as 
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respectively (Ilyas & Farid, 2021).
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One may verify it by using the substitution 
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−
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−
.  One may observe that the form 

of (16) for ( )z z = , ( ) logz z =  ( ) zz e =  is responsible for the semigroup proprerty of 

the RL (defind in Eq. (8)-(9))),  Hadamard  (in Eqs.(10)-(11)) and the integral defined in 

equations (14)-(15) FIs, repsectivley.  

2. LITERATURE REVIEW 

Fractional calculus has become a crucial tool across various scientific and engineering 

disciplines due to its ability to more accurately describe and control systems with complex, 

non-local and memory-dependent dynamics. Its importance is likely to continue growing as 

more applications are discovered and as computational techniques continue to improve 

(Podlubny, 1998; Ross, 2006; Daftardar-Gejji, 2013). 

Fractional calculus on a finite interval [ , ]a b  is explored. The work of Hadamard is built 

and the concepts of integration and differentiation are extended. To establish conditions for 

boundedness and existence of FIs and derivatives in certain function spaces, including 

Lebesgue and 
pL  spaces was the main goal of the paper. It also investigated the semigroup and 

reciprocal properties of these operators, providing a foundation for further research in FC 

(Kilbas, 2001). 

 The integral equation was investigated and conditions for the existence of solutions were 

established. The equation, which involves a FI operator, was studied on a finite segment of the 

real line. Explicit formulas for the solutions were derived and properties of the corresponding 

FIs and derivatives were explored. The existence of solutions was proven in a specific space of 

functions and the solutions were shown to satisfy certain properties (Kilbas, 2003). 

The fundamental concepts of fractional calculus, specifically the RL operators were 

reviewed. The Taylor-Riemann series was subsequently examined using Osler's theorem, 

leading to the derivation of double infinite series expansions for certain elementary functions. 

In the course of this analysis, the convergence of an alternative form of Heaviside's series was 

proven. A Semi-Taylor series was also introduced as a special case of the Taylor-Riemann 

series and its connections to special functions were explored through the use of generating 

functions in complex fractional calculus (Munkhammar, 2004). 

A Mikusiński-type operational calculus was developed for a generalized RL fractional 

differential operator, which encompasses a one-parameter family of fractional derivatives with 

varying types and orders. The traditional RL and Liouville-Caputo fractional derivatives were 

shown to be specific cases of this general framework. The constructed operational calculus was 

then utilized to solve initial-value problems for linear equations involving these generalized 

fractional derivatives with constant coefficients, yielding solutions for arbitrary orders and 

types. Specific examples of these solutions were also presented (Hilfer et al., 2009). A novel 

fractional derivative was established, unifying the RL and Hadamard fractional derivatives into 

a single, more comprehensive form. Two distinct representations of this generalized derivative 

were obtained and an illustrative example was provided to demonstrate the results 

(Katugampola, 2011). Fractional Brownian motion, time-fractional diffusion and standard 

Brownian motion as special cases, with the Mainardi function emerging as a natural 

generalization of the Gaussian distribution were inroduced (Pagnini, 2012). 
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A deeper examination of the RL derivative, a widely employed fractional derivative, was 

conducted. Additionally, certain previously undiscussed properties of the Caputo derivative 

were also explored. Furthermore, partial fractional derivatives were introduced, providing 

valuable insights into the understanding of fractional calculus and its application in modeling 

diverse phenomena in science and engineering (Li et al., 2011). A generalization of the classical 

Hadamard FI, which was achieved by utilizing the k-gamma function, was presented. The 

properties of this extended operator were examined, including its semigroup property, 

commutative law and boundedness (Farid & Habibullah, 2015). 

 The semigroup and reciprocal properties of Hadamard-type fractional operators were 

examined. Conditions for solving certain Hadamard-type fractional differential equations 

(HTFDEs) were established using the Banach contraction mapping principle. A novel Gronwall 

inequality with weak singularity was proved and the dependence of HTFDE solutions on 

derivative order and perturbation terms was analyzed. Illustrative examples were also provided 

(Ma & Li, 2017). 

The densities of products and ratios of independently distributed positive scalar random 

variables 1x  and 2x  were examined. Generalizations of Kober operators were explored, 

including pathway ideas and Gauss' hypergeometric series, offering a broader framework that 

encompasses various special cases, such as Saigo operators, with statistical interpretations 

(Mathai & Haubold, 2017). The RL version was deemed most suitable, yet numerical 

approximations mostly employed the Caputo version. This paper focuses on numerical 

approximations of fractional differentiation based on the RL definition, covering various kernel 

types: power-law, generalized Mittag-Leffler-law and exponential-decay-law (Atangana & 

Gómez‐Aguilar, 2018). 

A probabilistic interpretation of Kober's fractional integration was proposed, showing 

that it can be expressed as a constant multiple of an expected value. The associated random 

variable represents dilation, following a gamma distribution. Similar interpretations were found 

for EK fractional integration and fractional differential operators (Tarasov &  Tarasova, 2019). 

This research focused on bounding RL FIs using (h-m)-convex functions. Upper bounds for 

the sum of left and right FIs were established and a modulus inequality was derived using (h-

m)-convexity. A Hadamard-type inequality was also obtained with an additional condition. 

Various special cases of the results were identified (Farid, 2021). 

A new Caputo-type modification of the Erdélyi-Kober fractional derivative was 

introduced. Representations of Erdélyi-Kober FI and derivative operators were formulated. 

Properties of the new modification and its relationships with other Erdélyi-Kober fractional 

derivatives were derived. A numerical method was also presented to solve fractional 

differential equations involving the proposed derivative, with potential for wide application in 

simulating fractional models (Odibat & Baleanu, 2021). 

The investigation of a class of boundary value problems for Hadamard fractional 

differential equations with integral boundary conditions and disturbance parameters, yielding 

uniqueness results for positive solutions under weaker conditions was enabled (Liu & Liu, 

2022). 

3.  MATERIALS AND METHODS 

The k − gamma function denoted as ( )k  , is a generalization of the classical gamma 

function. For 0,k    with Re( ) 0  , ( )k   is defined as  
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k e t dt
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The relation between k − gamma and k −Beta function is given as 
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It can be seen that  
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For any 
2( , ) ( )k R + and 

2( , ) R   , the left and the right k − FIs of RL type, of 

order 0   of a function ( )t are, respectively, defined as 
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(Mubeen & Habibullah, 2012). 

For any 
2( , ) ( )k R + and 

2( , ) R   , the left and the right k − FI of H-type, of order 

0  of a function ( )t are, respectively, defined as 
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(Farid & Habibullah, 2015). 

 

Definition 3.1 For any 
2( , ) ( )k R + and 

4( , , , )a b R   , the left and right k − FI of RLK 

type having order 0   of a function ( )t are defined as 
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respectively.  

 

Definition 3.2 For any 
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Definition 3.3 For any 
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k − FI of order 0  are defined as 
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Definition 3.4 For any 
2( , ) ( )k R + and 

4( , , , )a b R   , the left and right IFK k − FI of 

order  of a function ( )t  are defined as 
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In this section, some defintions of k − FIs of order   are given. In the next section, the related 

semi-group properties and the commutative properties of the FIs are discussed. 



Ghulam Farid et al. 1165 

 

Migration Letters 

4.  RESULTS AND DISCUSSIONS  

4.1. Results 

The semigroup property of FC operators (integrals and derivatives) is a fundamental concept 

in fractional calculus, which enables the use of fractional calculus in various fields, allowing 

for the modeling and analysis of complex phenomena with non-integer order dynamics. It 

ensures the applicability of the operators in disciplines of science and engineering like Time-

fractional differential equations, Fractional kinetics, Signal processing, Image processing, 

Control theory, Mathematical finance, Biological systems, Material science, Electrical 

engineering and Mathematical physics. In this section, we explore the semigroup properties of 

the RLK, HK, the extended HK and IFK k − FIs of order . 

Theorem 1 

For any 
2( , ) ( )k R + and 

4( , , , )a b R   , we have 
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Reversing the order of the integrals, it follows that  
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Putting Eq. (16) for ( )z z = , the above equation leads to 
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It, by use of (20), takes the form 
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Likewise, for t  ; using Eq. (22), we get  
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By interchanging the order of the integrals, we have 
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1
{ { ( )}} ( )( ) ( ) ( ) .

( ) ( )

RLK RLK b k k
a b k a b k

k k t t

a
I I t t d d

k t a

   
 

 


       

 

− −

− −

+
= − −

  +   

Using Eq. (16) for ( )z z = , in above equation, it follows that   

 
1

, ; , ; 2

1
{ { ( )}} ( )( ) ( ) ( , ) .

( ) ( )

RLK RLK b k k
a b k a b k

k k t

a
I I t t B d

k t a k k

  
 

 

  
    

 

+ −

− −

+
= −

  +  

By applying Eq. (20), it leads to 

 
1

, ; , ; 2

1
{ { ( )}} ( )( ) ( ) ( , )

( ) ( )

RLK RLK b k
a b k a b k k

k k t

a
I I t t kB d

k t a

  
 

 


      

 

+
−

− −

+
= −

  +  

  
1

2

( , )
( ) ( ) ( )

( ) ( )

bk k

k k t

kB a
t d

k t a

  
  

   
 

+
− +

= −
  + . 

It, by the use of (19), becomes  

 

1

, ; , ; 2

( ) ( )

( )
{ { ( )}} ( ) ( ) ( )

( ) ( )

k k

RLK RLK bk k
a b k a b k

k k t

k
a

I I t t d
k t a

  
 

 

 

  
    

 

+
−

− −

 

 + +
= −

  +  
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( ) ( ) ( )
( )

bk

k t

a
t d

k t a

  


   
 

+
− +

= −
 + +  

   , ; { ( )}.RLK

a b kI t 

 +

−=
 

Theorem 2 

For any 
2( , ) ( )k R + and 

4( , , , )a b R   , we have 

, ; , ; , ; , ;{ { ( )}} { { ( )}},RLK RLK RLK RLK

a b k a b k a b k a b kI I t I I t t   

     + + + +=   

 and 

, ; , ; , ; , ;{ { ( )}} { { ( )}}, .RLK RLK RLK RLK

a b k a b k a b k a b kI I t I I t t   

     − − − −=   

Proof: 

Since addition is commutative in R+
, the above results follow.

 
In an analogous way of that of the above theorem, one may prove the results given below: 

 

Theorem 3 

For any 
2( , ) ( )k R + and 

4( , , , )a b R   , we find that 

       , ; , ; , ;{ { ( )}} { ( )},HK HK HK

a b k a b k a b kI I t I t t   

    +

+ + +=   

and 

 

 
, ; , ; , ;{ { ( )}} { ( )}, .HK HK HK

a b k a b k a b kI I t I t t   

    +

− − −= 
 

 

   

Theorem 4 

For any 
2( , ) ( )k R + and 

5( , , , , )a b c R   , we find that  

      
* * *

, , ; , , ; , , ;{ { ( )}} { ( )},HK HK HK

a b c k a b c k a b c kI I t I t t   

    +

+ + +=   

and 

       
* * *

, , ; , , ; , , ;{ { ( )}} { ( )}, .HK HK HK

a b c k a b c k a b c kI I t I t t   

    +

− − −=   

 

Theorem 5 

For any 
2( , ) ( )k R + and 

4( , , , )a b R   , we have 

 , ; , ; , ;{ { ( )}} { ( )},IFK IFK IFK

a b k a b k a b kI I t I t t   

    +

+ + +=   

and 
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 , ; , ; , ;{ { ( )}} { ( )}, .IFK IFK IFK

a b k a b k a b kI I t I t t   

    +

− − −= 
 

The same reason of that of Therorem 2 proves the commutative properties of the FIs 

defined in (23) to (28). 
 

 

4.2. Discussion 

In current study, some k − FI like RLK, HK, the extended HK and IFK are introduced. As the 

semigroup properties for the left and right RLK k − FI are proved in theorem 1, the semigroup 

properties of the HK, the extended HK and the IFK k − FI, mentioned in Th# (2), (3) and (4), 

follow in an analogous fashion. From the above discussion, the proposed k − FIs of order   

can also be generalized as 

For any 
2( , ) ( )k R + and 

4( , , , )a b R   ;  we defind the g −  generalized forms of the 

above proposed k − FIs as 

  

  1

; ;

1 ( )
{ ( )} ( ) ( ) ( ) , ,

( ) ( )

t

RL ak
a g k

k

g
I t t d t

k g t









     



−

+ = − 
   

(29) 

 
1

; ;

1 ( )
{ ( )} ( ) ( ) ( ) , ,

( ) ( )

RL ak
a g k

k t

g
I t t d t

k g t

 





     



−

− = − 
   (30) 

  1

; ;

1 1 ( )
{ ( )} (log ) ( ) ( ) , ,

( ) ( )

t

HK ak
a g k

k

t g
I t d t

k g t









    

  

−

+ = 
   (31) 

  1

; ;

1 1 ( )
{ ( )} (log ) ( ) ( ) , ,

( ) ( )

HK ak
a g k

k t

g
I t d t

k t g t

 




 
    

 

−

− = 
   (32) 

  * 1

, ; ;

1 1 ( )
{ ( )} (log ) ( ) (log ) ( ) , ,

( ) ( )

t

HK a bk
a b g k

k

t g
I t t d t

k t g t




 




    

 

−

+ = 
   

(33) 

  
* 1

, ; ;

1 1 ( )
{ ( )} (log ) ( ) (log ) ( ) , ,

( ) ( )

HK a bk
a b g k

k t

g
I t t d t

k t t g t

 


 

 
    



−

− = 
   (34) 

  

  

1

; ;

1 ( )
{ ( )} ( ) ( ) ( ) ,

( ) ( )

t

IFK t ak
a g k

k

g
I t e e e d t

k g t


  






    



−

+ = − 
    

(35) 

and 

  1

; ;

1 ( )
{ ( )} ( ) ( ) ( ) , .

( ) ( )

t

IFK t ak
a g k

k

g
I t e e e d t

k g t


  






    



−

− = − 
   (36) 

THE SEMIGROUP AND HENCE THE COMMUTATIVE PROPERTIES OF THE g −

GENERALIZED FIS DEFINED IN (29) TO (36) FOLLOW IN THE SAME FASHION 

OF THAT OF FIS DEFINED IN (21) TO (28).  

5. CONCLUSION 

In this paper, using the idea of some classical FIs and k − extended special funcions (Gamma 

and Beta), a number of  new k − FIs (left and right) of the type RLK, HK, the extended HK 

and IFK are introduced. Moreover, for a given function ( )t ; the g −  generalized forms (left 

and right) of all the newly defined k − FIs are also introduced. A special integral representation 

of the classical Beta function is also proved for a general function ( )t . Using this special 

representation, the semigroup properties of all the newly defined FIs are proved. The 

commutative properties follow directly from the semigroup properties. It is expected that the 

proposed k − FIs will have practical applications in the field of sciences and engineering. 

Moreover, the boundedness and various other properties of the proposed integrals may also be 

studied. 
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