
Migration Letters 

Volume: 21, No: 7 (2024), pp. 446-456 

ISSN: 1741-8984 (Print) ISSN: 1741-8992 (Online) 

www.migrationletters.com 

Regional Frequency Analysis With L-Moments For The 

Determination Of Drought Event Maps In High Andean 

Basins In Peru 
 

Melania Zapana Quispe1*, Eduardo Chavarri-Velarde2, Yénica Pachac Huerta3, Robinson 

Peña Murillo4, Yony Laqui Vilca5, Waldo Lavado-Casimiro6  

 

ABSTRACT 

Droughts are extreme climatic phenomena that are difficult to quantify spatially and 

temporally, due to the effects of climate change impacting socio-economic development. In 

this context, the research aims to estimate and map the frequency of theoretical 

meteorological droughts at different return periods through the method of regional 

frequency analysis (ARF) based on L-moments (LM), using 97 virtual stations from the 

gridded PISCO product based on annual mean precipitation (PMA). Two homogeneous 

rainfall regions were identified using a combination of the Ward method and the LM 

approach. For ARF, the generalized normal distribution (GNO) was selected due to its best 

fit with the ZDIST statistic, which allowed for the determination of the regional growth curve 

(quantiles). Finally, exponential predictive equations were obtained at a regional scale to 

relate LM and PMA, enabling the generation of meteorological drought maps. 
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1. Introduction 

Meteorological droughts result from precipitation deficits compared to what is considered 

"normal" (Núñez et al., 2011) and are a natural hazard (Wilhite, 2000). Drought episodes 

can cause significant social, economic, and environmental impacts, especially in arid and 

semi-arid regions. Historically, these events have affected large populations (35% of the 

world's population), often leading to fatalities (50% of mortality), while 7% of global 

economic losses have been attributed to their occurrence (Below et al., 2007). These losses 

are likely underestimated as indirect impacts are much more complex to quantify than direct 

consequences (Núñez et al., 2011), because they depend not only on the physical and 

temporal characteristics of the event (Wilhite et al., 2007). These impacts are more severe 

when communities are less prepared to face them, highlighting the importance of 

meteorological drought analysis to understand the probability of occurrence at different 

severity and duration levels (Acuña et al., 2011). 

Precipitation is one of the most challenging meteorological variables to include in 

mathematical or statistical models, primarily due to its discontinuity and high randomness, 

making reliable prediction models essential for this variable (García-Marín et al., 2015). 
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Regional frequency analysis (RFA) is a widely used method for analyzing extreme 

precipitation changes, which can be influenced in its results by identifying homogeneous 

regions and selecting regional distributions (Hosking y Wallis, 1997). Data from sites 

within a homogeneous region can be aggregated to improve accuracy in estimating the 

probability-quantile relationship at all sites (Wallis et al., 2007). 

There are different methods to fit probability distributions to precipitation record samples, 

among which stand out the method of moments, the maximum likelihood method, the 

probability-weighted moments method, and the L-moments method (Rivano, 2004). L-

moments are characterized by providing more accurate calculations than other methods in 

small sample sizes, with outliers in the data highly influencing the value of the standard 

deviation, making L-moments less sensitive to such values (Hosking y Wallis, 1997). 

There are different methods to fit probability distributions to samples of precipitation 

records, among which the method of moments, maximum likelihood method, probability-

weighted moments method, and L-moments method stand out (Rivano, 2004). L-moments 

are known for providing more precise calculations than other methods in small sample 

sizes, with outliers in the data that highly influence the value of the standard deviation, and 

L-moments are less sensitive to such values (Hosking y Wallis, 1997). 

In recent years, the methodology of L-moment-based Regional Frequency Analysis (ARF-

LM) has been validated in different parts of the worl, such as the United States, Mexico, 

Turkey, Germany, and New Zealand, as well as various European countries (Núñez et al., 

2011) Canada (Alila, 1999), Korea (Lee y Maeng, 2003), and Morocco (Moujahid et al., 

2018). Regarding Peru, the first initiative (Acuña et al., 2011) was applied to eleven 

hydrographic units (Olmos, Motupe, La Leche, Chancay Lambayeque, Zaña, Chaman, 

Jequetepeque, Chicama, Moche, Virú, and Huamansaña), located in the Pacific 

hydrographic region, for droughts at 60% of the PMA. 

However, an analysis of meteorological droughts is limited by the absence of a suitable 

source of precipitation records for probability estimation. Therefore, monthly gridded data 

from the PISCO v2.0 product (Peruvian Interpolation of the SENAMHI’s Climatological 

and Hydrological Stations) was used. The research objective was to determine maps of 

meteorological drought events in the high Andean basins of Peru using ARF-LM. 

 

2. Materials and methods  

2.1. Description of the study area 

The study area is located in southern Peru, in the departments of Apurímac and Cusco, 

encompassing the high Andean basins of Peru, which belong to the Atlantic watershed 

(Figure 1). It extends between longitudes 71° 00´ - 73° 30´ and latitudes 11º 54´ - 15º 36´. 

It has an area of 61,533.0 km2, an average elevation of 3,435.0 meters above sea level, a 

rainy-semi-cold climate with rainy summers averaging 700 mm annually, and dry winters 

with moderate frosts and average annual temperatures of 7 °C. 
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Figure 1. (a) Location of the study area in Peru; (b) Andean highland basins under study, 

(c) Altitude of the study area; (d) Observed stations (SENAMHI); (e) Virtual stations of 

PISCO product to measure the annual mean precipitation (PMA). 

2.2. Data source 

Ninety-seven virtual monthly precipitation stations were considered in the study area, based 

on the gridded product PISCO, developed by the National Meteorology and Hydrology 

Service of Peru (SENAMHI). PISCO combines ground station data with climatologist, 

reanalysis, and satellite products for rainfall estimation, to obtain nationwide gridded data 

at a resolution of 0.05° (~5 km). The analysis covers a record of 36 years from the period 

1981–2016 (Aybar et al., 2020) and is available at: 

https://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/?Set-Language=es. 

2.3. Methodology 

2.3.1.  Data preparation 
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Quality control checks were conducted based on statistical tests of precipitation data from 

the virtual stations in the study area. In the initial stage of the study, an exploratory data 

analysis (AED) was performed to detect outliers using box plots (Hubert y Vandervieren, 

2008). Subsequently, the assumptions were verified (hypothesis testing of virtual stations 

to analyze the stationarity of the series) for the ARF-LM, considering the non-parametric 

Mann-Kendall test (Yue et al., 2002). 

2.3.2. Homogeneous zone identification 

To identify homogeneous regions using ARF-LM, a preliminary grouping of homogeneous 

regions was conducted using the Ward method (Miyamoto et al., 2015), aiming to 

determine regions of stations that synthesize the regional rainfall behavior of each zone. 

Subsequently, the final grouping of stations was carried out using LM through station 

filtering employing the discordance measure (Di) and the heterogeneity measure (Hj; j=1, 

2, 3, n), where it is considered acceptably homogeneous if Hj<1; possibly heterogeneous if 

1<Hj<2; and definitely heterogeneous when Hj>2 (Hosking y Wallis, 1997). 

2.3.3. Determination of probability distribution function  

Five distributions with 3 parameters were evaluated: Generalized Logistic (GLO), General 

Extreme Value (GEV), Generalized Pareto (GPA), Log normal (LN3), Generalized Normal 

(GNO), and Pearson Type III (PE3). From these distributions, the one with the best fit was 

selected based on regional LM ratios diagrams, representing L-skewness (τ3) and L-

kurtosis (τ4) on a plane. Subsequently, the Z-statistic (|ZDIST| ≤ 1.64) was used at a 90% 

confidence level (Hosking y Wallis, 1997). 

2.3.4. Determination of regional and local quantiles 

Quantiles are defined as the amount of precipitation associated with a specific probability 

function (Maeda et al., 2013). Station-level quantiles were calculated by multiplying the 

regional quantiles by the scale factor associated with each station (Eq. 1), as per Hosking 

& Wallis, (1997): 

Q̂i(F): is the quantile function for station; ûi: is the mean value for station I; q̂(F): is the 

regional growth curve. Uncertainty was estimated using the root mean square error (RMSE) 

precision measure and 95% error bounds (Núñez et al., 2011). 

2.3.5. Mapping the return period of drought events 

In this stage, a raster image of the PMA based on the gridded PISCO product data was used 

to calculate the spatial variability of LM in the study area. Using the PMA raster and the 

prediction function (Eq. 2), the coefficient of variation (L-Cv, τ), L-skewness (Sk, τ3), and 

L-kurtosis (Ku, τ4) values were generated for each cell of the PMA raster. 

The selected function to describe the relationship between the LM and PMA is as follows: 

α is the scale factor, β is the decay factor, δ is the calculated LM limit value, and the LM 

ratios corresponding to the linear moments (L-Cv, Sk, and Ku) according to Wallis et al., 

(2007). 

Q̂
i
(F)= ûi*q̂(F) (1) 

L-Momento ratio= ∝e-β(PMA)+ δ (2) 
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The maps of drought return periods are generated from the distribution parameters for each 

raster cell (L-Cv, Sk, and Ku), the non-exceedance probability (F), and using the 

cumulative distribution function for the selected regional probability distribution (Hosking 

y Wallis, 1997). Drought threshold maps to represent precipitation deficits at 20%, 40%, 

and 60% were generated from the PMA at 80%, 60%, and 40% of return periods. 

3. Results 

Based on the gridded PISCO data, no qualitative outliers were detected for station 

precipitation. It was observed that precipitation values were within the confidence limits 

(upper and lower). Furthermore, it was determined that out of the 97 stations, 9% exhibited 

significant trends, which were not considered, and 91% of the stations were accepted for 

analysis. 

Two homogeneous regions were considered using a combination of the Ward method and 

the LM method. The measure of discordance for homogeneous region 1 indicates that the 

regional mean annual precipitation (PMAR) was 759.14 mm, with a range of discordance 

from 0.08 - 2.56, and in homogeneous region 2, the PMAR was 1,252.51 mm, with a range 

of discordance from 0.262 - 2.00. The characteristics of the LM (Table 1) in each 

homogeneous region indicated the dispersion of the LM ratios of each station with respect 

to the regional LM ratios (Figure 2). 

 

Table 1. Main regional L-moment characteristics of homogeneous regions. 

 N° E l1 τ τ3 τ4 H1 H2 H3 

Region 1 56 1 0.10 0.04 0.13 0.94 -2.31 -3.32 

Region 2 14 1 0.06 -0.03 0.12 0.21 -1.80 -2.69 

N° E: number of stations, H: heterogeneity. l1: sample mean, τ: coefficient of variation, τ3: 

L-skewness coefficient, τ4: L-kurtosis coefficient. 
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Figure 2. L-moment ratios of stations for each homogeneous region. Mean of regional L-

moment ratios (point in bold). Mean of each station (point in red). 

The measure of heterogeneity for the 2 homogeneous regions according to the statistics 

(Table 1), statistic H1 was considered the most stringent for evaluating homogeneity; the 

regions showed values below 1, considered homogeneous (Figure 3). The formation of 

homogeneous regions considered 70 stations for analysis. 
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Figure 3. Location of stations for each homogeneous region (RH). Blue points RH 1 and 

red points RH 2. 

According to the diagram of LM ratios per station with the mean of regional LM ratios for 

homogeneous regions 1 and 2 with respect to the 5 theoretical distributions, the best fit is 

presented for PE3 and GNO, respectively (Figure 4). Likewise, using the ZDIST statistic in 

homogeneous regions 1 and 2 showed a better fit to PE3 and GNO, respectively (Table 2). 

 
Figure 4. Diagram of L-moment (LM) ratios per station with LM regional ratios vs 

candidate distributions for homogeneous regions. Generalised Logistic (GLO), Generalised 

Extreme Values (GEV), Generalised Pareto (GPA), Log-Normal (LN3), Generalised 

Normal (GNO), and Pearson Type III (PE3). 
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Table 2. ZDIST statistic for various distributions 

Statistic Region 1 Region 2 

ZGLO 4.99 3.03 

ZGEV -2.44 -1.09 

ZGNO -0.96 0.12 

ZPE3 -1.06 0.09 

ZGPA -16.42 -8.32 

ZDIST: Goodness-of-fit statistic. 

 

Subsequently, the quantiles of the regional growth curve for frequencies of 0.01, 0.02, 0.04, 

0.05, 0.07, 0.1, 0.2, and 0.5 determined that the most robust distribution is the GNO for 

homogeneous regions 1 and 2 for return periods of 100, 50, 25, 20, 15, 10, 5, and 2 years 

(Table 3). 

Table 3. Parameters and regional quantiles for the best-fitting distribution 

 
Distribution 

Regional quantiles for non-exceedance probabilities 

 F = 0.01 0.02 0.04 0.05 0.07 0.1 0.2 0.5 

 TR = 100 50 25 20 15 10 5 2 

Region 1 GNO Quantile 0.63 0.67 0.71 0.73 0.75 0.79 0.85 0.99 
  RMSE 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.01 
  LEI 0.52 0.57 0.63 0.65 0.68 0.72 0.81 0.98 
  LES 0.76 0.78 0.81 0.82 0.83 0.85 0.90 1.00 

Region 2 GNO Quantile 0.73 0.76 0.80 0.81 0.83 0.85 0.91 1.00 
 

 RMSE 0.05 0.04 0.03 0.03 0.03 0.02 0.01 0.01 

  LEI 0.65 0.70 0.75 0.76 0.78 0.82 0.88 1.00 

  LES 0.81 0.83 0.85 0.86 0.87 0.89 0.93 1.01 

F: Non-exceedance probability, TR: Return period, RMSE: Root mean square error, LEI: 

Lower error limit, LES: Upper error limit. 

For the mapping of the TR of drought events, curves were constructed based on the regional 

curves associating LM ratios and PMA adjusted to an exponential function where LM 

decreases as precipitation increases (Eq. 3, Eq. 4, and Eq. 5). The generated exponential 

functions were used to calculate the spatial distribution of the parameters of the GNO 

distribution, and through map algebra, the spatial distribution of LM in the study area was 

obtained, where high L-Cv regions are areas more likely to experience drought events 

compared to those with low L-Cv values. Finally, the maps were evaluated at different TRs 

(Figure 5), for deficits of 20%, 30%, and 40% of the PMA, drought occurs more 

prominently at return periods of 18 to 25 years, 16 to 50 years, and 76 to 100 years 

respectively. Although the latter also prevailed in the 30% deficit. 

L-Cv= 0.24e-0.0020(PMA)
+ 0.4 (3) 

L-Sk= 0.30e-0.0032(PMA)
+ 0.4 (4) 

L-Ku= 0.24e-0.0041(PMA)
+ 0.4 

(5) 
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Figure 5. Drought maps at different equivalent return periods: (a) 80% of the mean annual 

precipitation (PMA) with a 20% precipitation deficit; (b) 70% of PMA with a 30% 

precipitation deficit; (c) 60% of PMA with a 40% precipitation deficit. 

4. Discussion 

4.1. Regional frequency analysis based on L-moment 

The assessment of data quality and stationarity (Mann-Kendall) was conducted for each 

station (local level), which provides greater robustness compared to regional-level 

evaluation (Núñez et al., 2011). The maximum discordance for homogeneous region 1 and 

homogeneous region 2 was lower than the maximum allowed (3.00; Hosking & Wallis, 

1997) for regions with more than 15 stations. Regarding the H1 statistic for homogeneous 

region 1 and homogeneous region 2, these were lower than the maximum allowed (1.00; 

Hosking & Wallis, 1997). 

The distribution that bests fit for homogeneous regions 1 and 2 is the GNO. This 

distribution also appeared in the Lake Titicaca watershed, with the same climatic behavior 

as homogeneous region 1 (Fernández & Lavado, 2017). 
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The quantiles of the regional growth curve for frequencies 0.01, 0.02, 0.04, 0.05, 0.07, 0.1, 

0.2, 0.5, were higher in the driest region than in the wettest region, indicating more frequent 

extremes. Numerous studies have demonstrated this trend (Wallis et al., 2007, (Núñez 

et al., 2011), (Kaluba et al., 2017) 

The RMSE for homogeneous regions 1 and 2 for a return period of 100 years falls within 

the permitted range (0.05 – 0.160; Hu et al., 2019), indicating that the quantile estimates of 

the PMA are reliable and can be used in the study area. 

The mapping of meteorological drought at 40% deficit of PMA occurred in the southwest 

of the study area with a TR of 18 - 26 years, a result also observed in central-northern Chile 

(Núñez et al., 2011), a location with similar climatic behavior. 

5. Conclusions 

In this study, the ARF-LM methodology was developed to estimate the spatial distribution 

of drought frequency in the study area, located in a transition zone between semi-arid and 

humid areas, relying solely on the use of gridded data from the PISCO product, valid for 

sites with and without rainfall records. 

The general objective was to characterize meteorological drought using ARF-LM. The 

statistics demonstrated high reliability, enabling the identification of homogeneous regions 

adjusted by various probability distributions. The GNO distribution was considered the 

most acceptable, facilitating the determination of the regional growth curve for the study 

area. Finally, exponential predictive equations at a regional scale were obtained to relate 

LM and PMA, allowing for the generation of meteorological drought maps at different 

return periods. 
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