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Abstract 

Probability distribution models are very helpful to solving many real-life problems. The 

development of new or extensions to an existing model is a very attractive area of research. 

Among many types of probability distribution models, weighted distributions are becoming 

more important for modeling data. Weighted distributions can help discover defects in 

manufacturing and outliers by weighting significant observations. Control charts are the most 

important tools to monitor process efficiency. In recent decades, researchers have focused on 

weighted distributions, especially those with size and area biased exponential distribution. This 

research introduces a novel control chart for a characteristic following a size-biased and area-

biased exponential distribution to emphasize the relevance of weighted distributions. Charts 

are effectively determines size-biased and area-biased exponential distribution control chart 

limits also Monte Carlo simulations are used to assess different Average Run Length (ARL) 

values.  

KEYWORDS Shift Detection, Size-Biased Exponential Distribution, Area-Biased Exponential 

Distribution, Statistical Process Control, Detection Sensitivity, Comparative Analysis. 

1. Introduction 

The most crucial part of statistical quality control is identifying process parameter changes. 

This ensures optimal efficiency and reduces errors. This study assesses shift detection strategies 

for exponential distributions with size and area bias. Applying shift detection to exp1onential 

distributions to do this. These biased distributions assistance in comprehending process 

changes beneath the surface. They may do this because they typically depict real-world events 

more realistically. Comparing the two approaches to establish which has more sensitivity and 

accuracy in monitoring processes. This comparison is done to compare. These discoveries are 

extremely relevant in medicine, where precise process control is critical for patient safety and 

treatment effectiveness. Overall, the study's findings are relevant. This comparative research 

study may shed light on the development of advanced monitoring systems in the healthcare 

industry and other relevant areas.Shewhart control charts were important early 20th-century 

statistical process control (SPC). Use Shewhart control charts for developing SPC. Monitoring 

data points against control limits set around a central average allowed them to discover process 

deviations. This was done via data monitoring.  These charts tracked processes, identified 

issues, and indicated when changes were required to maintain quality and reduce variability[1]. 

In an economic-statistical context, parameter estimation affected control chart performance. It 

examined control charts' behaviour when crucial parameters were produced from sample data 
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and their implications on statistical correctness and economic issues. Control chart operations 

were stressed. Trade-offs between these components were examined in this study. The study 

studied how parameter estimates affected charts' ability to detect out-of-control events and false 

alarm or process change costs. It also investigated the company's false alarm costs. Estimating 

parameters may increase variability, evidence shows. The results also suggested that control 

chart design must include corporate and industrial uncertainty [2].This research examined 

control chart in-control resilience. These control charts were tested for stability and false alarm 

resistance at constant settings. Multiple charts were compared to see which worked best when 

operations were under control[3]. Studies analyzed quality and production management using 

Shewhart control charts. A study found these charts beneficial for industrial site monitoring. 

The charts identified process abnormalities, enhancing quality control and production 

efficiency [4].  

Many techniques to enhance Shewhart control charts were studied, emphasizing high 

sensitivity and accuracy. To track the Weibull mean. Design changes may enhance Weibull 

mean oscillation detection, improving process monitoring and quality control [5].Process mean 

control charts were compared to assess how effectively they identify changes. The research 

tested control chart change detection. Showing chart reliability and sensitivity assistances 

identify the best process monitoring systems [6]. This research compared highly competent 

process control charts statistically. Analysis happened throughout the project. This study 

assessed how successfully control charts identify and stabilize changes. The report 

recommended effective monitoring charts for high-performance situations [7]. 

 This study examined intelligent manufacturing control charts. The research examined these 

control charts' efficacy in automated, technologically sophisticated settings. This study 

assessed charts for smart manufacturing continuous monitoring and quality control[8]. 

Shewhart time-between-events control charts are compared and analyzed in a renewal process 

to measure their effectiveness. The optimum control chart designs for time interval monitoring 

were investigated. Emphasizing control chart design contrasts accomplished this purpose[9]. 

Shewhart control charts' Average Run Length (ARL) was used to assess their efficiency when 

process data were obtained from a much smaller population. This study  how this characteristic 

affects the control chart's efficacy and reliability to better understand these elements. 

Performance fluctuated owing to the limited population sample [10-]. This study considered 

run-length for detecting structural change in time series data. Modification identification speed 

was considered throughout the experiment. Many detection approaches were tested for their 

sensitivity to time series data alterations and structural change analysis. This tested detecting 

system sensitivity[11].This study suggests that statistical process control ARLs should be 

affected by non-normally distributed data. This research examined how distributions 

influenced ARLs using computer modelling. The research found control chart reliability and 

robustness [12].  

Which side-sensitive synthetic chart designs worked best was studied. We stressed the 

coefficient of variation and used median run length and expected median run length. These 

designs were tested for coefficient of variation detection. Improvements in control chart 

topologies boosted dependability [13]. A novel Rayleigh-distributed system control chart was 

created from this study. Glass fiber strength was tracked using this chart. This control chart 

was tested for Rayleigh-distributed data variation detection [14]. The progressive adaptation of 

linear profile parameters was the primary objective throughout this research. The study 

explored several industrial linear profile monitoring approaches. Since process configurations 

fluctuate, the research prioritized precision and efficiency. Many strategies were tested to 

enhance linear profile monitoring and management in complex industrial situations [15]. 
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Industrial quality assurance is being improved via a weighted exponential distribution-based 

control chart. The monitoring process utilizes this method since it detects production 

irregularities better than common control charts. Production quality control methods are 

predicted to improve with this innovation [16]. 

2 Materials and Methods 

2.1 ARL Curves Under Size Biased and Area Biased Exponential Distributions 

 The pdf of the size-biased exponential distribution is given. 

f(x; θ) =  xθ2e−θx        x > 0 , θ > 0   

The cdf is. 

F(x) = 1 − (1 + θx)e−θx  

The mean and the variance SBED are. 

E(θ) =
2

θ
 

var(θ) =
2

θ2
 

The pdf of the Area-biased exponential distribution is given. 

                       f(x, θ) =
x2θ3e−θx

2
        ;   x > 0 , θ > 0  

The cdf is. 

F(x) = 1 −
(θ2x2 + 2θx + 2)e−xθ

2
 

The mean and the variance of ABED are. 

E(θ) =
3

θ
 

var(θ) =
3

θ2
 

 

 

 

 

 

 

Figure: 1 PDF of Size Biased Exponential 

Distribution                                                                   

 

            

 

Figure: 2 PDF of Area  Biased Exponential 

Distribution 
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The underlying principle of the weighted variance technique involves dividing a skewed 

distribution into two phases at its mean and then using each section to establish a new 

symmetric distribution. The control chart limits in the weighted variance approach are 

determined using symmetric distributions. The weighted variance approach shifts control limits 

for skewed distribution based on population skewness without assumptions. 

UCL = μ + 3
σ

√n
√2Px (2.1) 

LCL = μ − 3
σ

√n
√2(1 − Px) (2.2) 

The likelihood that a r. v  (x) will be smaller than or equal to its mean is represented by “Px” 

Note that when Px = 0.5, the weighted variance X̅chart reduces to the standard X̅chart. In this 

case, (n) is the sample size and σ is the S.D of X. 

Size-biased exponential distribution mean and standard deviation are used to derive its 

theoretical control limits, which are as follows. 

UCL = E(θ) (1 +
k

√2
× √2Px)  (2.3) 

CL = E(θ)     (4.16) 

LCL = E(θ) (1 −
k

√2
× √2(1 − Px))  (2.4) 

The variable k is used to denote the extent of the control limits, where as θ0 represents the in-

control value of the scale parameter 𝜃. In the case of an out-of-control process, the parameter 

undergoes a shift to a different value, denoted as θ0 =  δθ0 . 

The control limits refer to the statistical limits that are established to determine if a process is 

within acceptable bounds or whether it shows variations that are outside the expected range. 

The parameters of the size-biased exponential distribution chart are the (LCL), (UCL), and 

(CL). If the (UCL) and (LCL) demonstrate random behavior, it can be inferred that the process 

is stable. The phenomenon is commonly referred to as a "shifted process". The suggested study 

utilizes the ARL (Average Run Length) and Δ ARL (Change in Average Run Length) 

performance indicators. 

 

2.2.1 Simulation study 

i. The predetermined value for the average run length under control conditions 

ARL0 has been established at 200, 300, and 370. 

ii. The control limits are determined by using a known parameter of the size-

biased exponential distribution. 

iii. A total of 30,000 samples, each with a sample size of  n = 1, are drawn from 

a distribution that follows a size-biased and Area biased exponential 

distribution. 

iv. Each sample is analyzed until it is found to be outside of a set of control limits. 

v. Samples outside control limits are recorded as the value of random variable 

RL, and the loop repeats step 2. 

vi. The above method is iterated 50,000 times, resulting in the random variable 

RL having a total of 50,000 values. 

vii. The last procedure is to determine RL mean, median, standard deviation, 

minimum, and maximum. The 25th, 75th and 99th percentiles of RL and the 

percentage decline in ARL are calculated. 

 To further understand the (ARL) pattern, other useful measures of (RL) should be 

applied. The metrics include SDRL, MRL, MinRL, MaxRL, and various RL percentiles. RL 

curves may be used to get more information about chart performance. Monte Carlo simulation 

was utilized to evaluate all chart metrics.  

3: Performance Evaluation of ARL Curves under Size Biased Exponential Distribution 
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To thoroughly evaluate ARL's performance for the chart, other useful RL metrics should be 

employed. SDRL, MRL, MinRL, MaxRL, and RL percentiles are utilized in this category. This 

section also includes (MinRL), (MaxRL), and (SDRL) metrics. The Monte Carlo simulation 

approach was utilized alone and with the RL curves to discover the best ARL curves for 

optimum outcomes. As illustrated in Tables 4.5–4.7, size-biased and area-biased exponential 

distribution ARL curves follow this trend. This pattern is seen in the curves. Data from both 

distributions indicates this pattern.  

Table 3.1 RL measures for shifted process at  𝐀𝐑𝐋𝟎 = 𝟑𝟕𝟎 , 𝐊𝐒𝐁𝐄𝐃 = 𝟑. 𝟕𝟒 , 𝛉 = 𝟏  

Shift 

𝛅 

ARL M-RL SD-RL MinRL Max-RL 𝐏𝟐𝟓 𝐏𝟕𝟓 𝐏𝟗𝟗 

1 371.31   258 368.49 1 4531 108 518 1677 

0.9 156.44 
(57.87) 

  109 155.21 1 1365 45 216 721 

0.8 74.19 
(80.02) 

   52 73.55 1 869 22 103 344 

0.7 37.15 
(89.99) 

   26 36.43 1 331 11 51 168 

0 .6 19.10 
(94.86) 

   13 18.67 1 201 6 26 87 

0.5 9.99 
(97.31) 

7 9.41 1 93 3 14 44 

0.4 5.48 
(98.52) 

4 4.93 1 49 2 7 23 

0.3 3.10 
(99.17) 

2 2.54 1 25 1 4 12 

0.2 1.85 
(99.05) 

1 1.26 1 13 1 2 7 

0.1 1.22 

(99.67) 

1 0.52 1 6 1 1 3 
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Table 3.2: RL measures for shifted process at  𝐀𝐑𝐋𝟎 = 𝟑𝟕𝟎 , 𝐊𝐀𝐁𝐄𝐃  = 𝟐. 𝟗𝟐 , 𝛉 = 𝟏 

 

Any control chart's effectiveness is corresponding to its limits, both in identifying changing 

processes and maintaining the average run length (ARL). This occurs distinct of control chart 

type. To function properly, the chart must include all of these properties. Lower shifted process 

indicator values correspond with more quick responses. Therefore, utilize a control chart with 

decreased Average Run Length ARL1 values to identify process changes.  

4: Comparative Study 

The proposed control chart technique aims to reduce Average Run Length (ARL) to detect 

process changes quickly while maintaining a fixed ARL0during control. Reduce the ARL. 

Reduce the ARL to do this. To ensure the required ARL0 remains constant, the control limit 

width (K) is adjusted. To prevent changes to ARL0, this step is performed. The quantity of false 

alarms and their detection rate are balanced this way. Comparing ARL1 for process shifts (δ) 

across control chart configurations evaluates strategy success. Comparing this strategy helps 

determine its efficacy. We may assess the chart's responsiveness and ability to spot process 

changes by focusing on distributions like the Size-Biased Exponential and Area-Biased 

exponential distributions. We can assess the chart's process change detection using this 

information. With this study, practitioners may study how chart features impact detection 

speed. This allows them to choose control charts which satisfy their operational demands, 

which is convenient. Control limit widths, established by a specified ARL0, enable early 

process problem detection. Thus, quality control is ensured and the risk of non-compliant 

products is reduced. 

Shift 

𝛅 
ARL M-RL SD-RL Min-RL Max-RL 𝐏𝟐𝟓 𝐏𝟕𝟓 𝐏𝟗𝟗 

1 369.64 259 369.58 1 3346 106 511 1687 

0.9 
142.64 
(61.41) 

98 142.89 1 1524 41 198 653 

0.8 
61.77 

(83.29) 
43 61.33 1 652 18 85 285 

0.7 
28.89 
(92.18) 

20 28.34 1 313 9 40 130 

0 .6 
12.82 
(96.53) 

9 12.46 1 137 4 18 58 

0.5 
7.18 
(98.06) 

5 6.73 1 69 2 10 32 

0.4 
3.88 

(98.95) 
3 3.31 1 36 1 5 16 

0.3 
2.18 
(99.41) 

2 1.59 1 15 1 3 8 

0.2 
1.44 
(99.61) 

1 0.79 1 9 1 2 4 

0.1 
1.08 
(99.71) 

1 0.30 1 4 1 1 2 
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Table 4.1 RL measures for shifted process at  𝐀𝐑𝐋𝟎 = 𝟐𝟎𝟎 , 𝐊𝐒𝐁𝐄𝐃 = 𝟑. 𝟑𝟗𝟐 , 𝐊𝐀𝐁𝐄𝐃 =

𝟐. 𝟔𝟓𝟗 , 𝛉 = 𝟏  

Table 4.2 RL measures for shifted process at  𝐀𝐑𝐋𝟎 = 𝟑𝟎𝟎 , 𝐊𝐒𝐁𝐄𝐃 = 𝟑. 𝟔𝟑𝟓 , 𝐊𝐀𝐁𝐄𝐃 =
𝟐. 𝟖𝟑𝟗   , 𝛉 = 𝟏 

Shift 

𝛅 
𝐀𝐑𝐋𝐒𝐁𝐄𝐃 𝐀𝐑𝐋𝐀𝐁𝐄𝐃 

1 
201.39 

 
201.81 

0.9 
98.28 

(51.20) 

88.84 

(55.98) 

0.8 
49.74 

(75.30) 

41.93 

(79.22) 

0.7 
26.65 

(86.76) 

20.9 
(89.64) 

0 .6 
14.52 

(92.79) 

10.99 

(94.55) 

0.5 
8.11 

(95.97) 

5.91 
(97.07) 

0.4 
4.65 

(97.69) 

3.37 
(98.33) 

0.3 
2.76 

(98.62) 

2.05 

(98.88) 

0.2 
1.73 

(99.14) 

1.37 

(99.32) 

0.1 
1.20 

(99.40) 

1.07 

(99.47) 

Shift 

𝛅 
𝐀𝐑𝐋𝐒𝐁𝐄𝐃                    𝐀𝐑𝐋𝐒𝐁𝐄𝐃 

1 299.77                      299.75 

0.9 
135.77 

(54.71) 

122.73 
(59.96) 

0.8 
66.08 

(77.96) 

54.55 
(81.80) 

0.7 
33.24 

(88.91) 

25.94 
(91.35) 

0 .6 
17.52 

(94.16) 

12.99 
(95.67) 

0.5 
9.44 

(96.85) 

6.72 
(97.67) 

0.4 
5.17 

(98.28) 

3.71 
(98.76) 

0.3 2.99 2.17 
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       Table 4.3 RL measures for shifted process at  𝐀𝐑𝐋𝟎 = 𝟑𝟕𝟎 , 𝐊𝐒𝐁𝐄𝐃 = 𝟑. 𝟕𝟒 , 𝐊𝐀𝐁𝐄𝐃 =

𝟐. 𝟗𝟐  , 𝛉 = 𝟏 

The following tables 4.1-4.3 compares Size biased exponential (SBED) and Area biased 

exponential (ABED) Average Run Length (ARL) values. Comparisons are done over various 

shifts (𝛿) and ARL targets (200, 300, and 370). Parentheses are used to express detectability 

percentages, indicating process change recognition accuracy. SBED and ABED have 

comparable ARL values when the ARL objective is 200. It demonstrates that both methods can 

detect process changes. However, their differing detectability percentages reflect variable 

detection accuracy. This is because their detection abilities varied. SBED is 51.20% detectable 

and ABED 55.98% detectable with a shift of 0.9. ABED seems to be more reliable than other 

methods for identifying changes at this ARL target. This is because the information provided 

is now accessible.  

SBED and ABED indicate comparable ARL values when examined against an ARL objective 

of 300, indicating that both approaches may detect process changes. The identical ARL values 

for both demonstrate this. The detectability percentages reveal that ABED has a considerable 

advantage in detection measure accuracy. Statistical approaches can show that ABED detects 

shifts better than SBED. Because SBED detects 88.91% at 0.7 shift, whereas ABED detects 

91.35%. This is why.SBED and ABED both detect process changes, as indicated by their 

equivalent ARL outcomes for an ARL objective of 370. This proves both processes can detect 

process changes. ABED frequently has higher detectability percentages, indicating that it is 

(99.00) (99.28) 

0.2 
1.81 

(99.40) 

1.42 
(99.58) 

0.1 
1.22 

(99.59) 

1.08 
(99.64) 

Shift 

𝛅 
𝐀𝐑𝐋𝐒𝐁𝐄𝐃                    𝐀𝐑𝐋𝐀𝐁𝐄𝐃 

1 371.31                          369.64 

0.9 
156.44 

(57.87) 

142.64 

(61.41) 

0.8 
74.19 

(80.02) 

61.77 

(83.29) 

0.7 
37.15 

(89.99) 
28.89 

(92.18) 

0 .6 
19.10 

(94.86) 
12.82 

(96.53) 

0.5 
9.99 

(97.31) 

7.18 
(98.06) 

0.4 
5.48 

(98.52) 
3.88 

(98.95) 

0.3 
3.10 

(99.17) 

2.18 

(99.41) 

0.2 
1.85 

(99.05) 

1.44 

(99.61) 

0.1 
1.22 

(99.67) 
1.08 

(99.71) 
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more successful for detection changes. With a shift of 0.6, SBED is 94.86% detectable and 

ABED 96.53%. ABED maintains great detection accuracy at this ARL target, proving its 

superiority.  

The higher detectability rates of ABED imply that it performs better than other methods. ABED 

is more precise than other approaches. This is the case even though SBED and ABED provide 

equivalent ARL values across a wide range of shifts. These findings suggest that ABED may 

be the best method for process monitor detection accuracy.                                           

Figure 3: ARL Curves of SBED 

In Figure 3 demonstrates that ARL curves are essential for assessing SPC charts. These curves 

may indicate how fast a control chart can detect a process out of control. The chart's sensitivity 

to process changes can only be understood by examining K. For an ARL of 200, the Shewhart 

chart has a 99.40% chance of detecting a shift at 0.1 after the process chances out of control.  

The ARL value of 300, the Shewhart chart has a 99.59% chance of detecting a shift at 0.1 after 

the process is out of control. For an ARL of 370, the Shewhart chart has a 99.67% chance of 

detecting a shift at 0.1 after the process chances out of control.  The main goal is to develop 

SPC charts that can quickly identify minor issues and major changes. Process performance and 

deviations must be monitored and corrected. 
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Figure 4: ARL Curves of ABED 

In Figure 4 ARL curves are essential for assessing SPC charts. These curves may indicate how 

fast a control chart can detect a process out of control. The chart's sensitivity to process changes 

can only be understood by examining K. For an ARL of 200, the shewart chart has a 99.47% 

chance of detecting a shift at 0.1 after the process chances out of control.  The ARL value of 

300, the shewart chart has a 99.64% chance of detecting a shift at 0.1 after the process is out of 

control. For an ARL of 370, the shewart chart has a 99.71% chance of detecting a shift at 0.1 

after the process chances out of control.  The main goal is to create SPC charts that can quickly 

identify little issues and major changes. Process performance and deviations must be monitored 

and corrected. 

Data Application 

The provided data set consists of relief times, measured in minutes, for 20 patients receiving 

analgesic treatment[17]. This data reflects the lifetimes or durations between administration 

and the onset of relief from pain. Using statistical analysis, this data can reveal patterns in how 

quickly patients respond to the analgesic, offering insights into its effectiveness and 

consistency. The estimation of scale parameters in biased exponential distributions can give a 

deeper understanding of this data. In this context, the scale parameter δ0 ̂for the size-biased 

exponential distribution was estimated at 1.053, while the corresponding parameter for the 

area-biased exponential distribution was 1.57. These parameters indicate the rate at which relief 

occurs and the distribution of relief times among the patients. Such data is invaluable for 

medical professionals and researchers as it can inform the design of treatment protocols, predict 

patient outcomes, and highlight potential variations in drug efficacy. Additionally, it can guide 

the implementation of control charts to monitor and detect any significant shifts in treatment 

outcomes, ensuring consistent and reliable analgesic effects for patients. 
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Figure5: The SBED control chart for patients receiving analgesic treatment. 

 

Figure6: The ABED control chart for patients receiving analgesic treatment. 

 

In Figure 5-6  Size-Biased Exponential (SBE) control chart identified shifts in the 20 shifted 

sample points, particularly in the 11th and 16th samples. However, the Area-Biased 

Exponential (ABE) control chart recognized the shift at four independent sample point 12th, 

16th, 18th, and 20th. Given this, the Area-Biased Exponential control chart revealed is 

preferable to the Size-Biased Exponential control chart in certain instances.  

However, the ABED control chart identified the change earlier than the SBED chart. The 

ABED-based control chart also had a broader detection range of four points instead of  two . 

ABED control charts aspect to catch deviations from acceptable criteria better. Its more 

thorough detecting abilities may explain this. This makes it useful for quality control and 

process monitoring.  

Results and discussions 
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The purpose of this study was to develop a new size-biased exponential distribution control 

chart and compare it to an area-biased exponential distribution control chart. Since it 

incorporates these changes into its calculations, the new control chart for the size-biased 

exponential distribution and area-biased exponential distribution effectively describes the 

process. The new control chart has been simulated extensively to determine its performance. 

According to the results, the recently developed control chart had a shorter Average Run 

Length (ARL), indicating quicker process change detection.  

The current research demonstrated that the Area-biased exponential distribution control chart 

is more effective than the Size-biased exponential distribution control chart. Since this is the 

case, better quality control and process monitoring should be implemented. Thus, abnormalities 

would be identified more quickly and corrective initiatives more responsive, improving output 

quality and efficiency. In medical applications, this increased response to anomalies could 

contribute to early diagnosis and treatment. Thus, patient outcomes will improve and 

unforeseen effects will decrease. 
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