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Abstract 

 

Malaria is a disease caused by the Plasmodium parasite, with a prevalent distribution among people 

in Africa and some Asian countries. Migration of people can play a significant role in the spread of 

malaria. This study aims to develop and investigate the geostatistical maps of malaria patients and 

their correlation with distribution indicators for disease management in the years 2016-2020 in 

southern Iran. Malaria patient data was obtained from the Ministry of Health and drawn as 

geostatistical maps. To achieve full understanding and alignment of the malaria patients’ distribution 

patterns, five indices (Taylor, Iwao, Morisita, variance-to-mean ratio, and kappa) were used. The 

results showed that the aggregated distribution wave obtained from the geostatistical map in 2016, 

2017, and 2018 were 2, 3, and 2, respectively. The Taylor index indicated a cumulative pattern due 

to higher sensitivity to the clustering of distribution in 2016 and 2017, with Taylor coefficients of 1.02 

and 1.07, respectively. The Iwao coefficient showed random distribution of malaria patients. 

Furthermore, the alignment of maps with Morisita, variance-to-mean ratio, and kappa indices 

indicated that in 2016 and 2017, 15% and 20% of patients were cumulatively clustered, while 85% 

to 80% were randomly distributed in southern Iran. The distribution pattern of malaria patients in 

2019 and 2020 was random according to all indices and geostatistical maps. In general, it can be 

concluded that the distribution of malaria patients in southern Iran does not show a critical phase. 

However, considering the migration of individuals from neighboring countries, passive and active 

surveillance should be carried out simultaneously to identify patients in subsequent years. 
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Introduction 

 

Malaria is a severe disease caused by Plasmodium parasites, transmitted to humans through the bite 

of infected female Anopheles mosquitoes. It is one of the leading causes of death worldwide. Malaria 
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is most prevalent in Africa and some Asian countries (Talapko, Škrlec, Alebić, Jukić, & Včev, 2019). 

According to the latest World Health Organization malaria report 2022, there were an estimated 247 

million cases of malaria in 2021 in 84 malaria endemic countries, with estimated 593 000 cases of 

malaria deaths in 2021 (World Health Organization, 2022). 

Migration of people can play a significant role in the spread of malaria. People moving from areas 

with high malaria transmission to areas with low transmission can introduce the disease to new 

regions. Conversely, individuals from low transmission areas who travel to high transmission areas 

may be at increased risk of contracting malaria. The spatial pattern of disease distribution involves 

studying the factors influencing the distribution of a particular disease in a specific region. This spatial 

distribution at a defined scale provides valuable insights into the disease. Understanding the spatial 

distribution of a disease using mathematical models can aid in ongoing planning for disease control 

in an area and help identify populations at risk after the presence of an infected individual with the 

potential to transmit the disease. To design effective malaria control strategies, it is essential to 

understand the spatio-temporal heterogeneity of malaria in a region (Gwitira et al., 2020). In a study 

conducted on geographic information systems and statistical distribution of passive malaria data in 

Zimbabwean health centers, the results indicated a significant positive spatial distribution in the study 

area, highlighting the heterogeneity of malaria in that region. By identifying sources and clusters with 

high disease rates using statistical models, regions with high-risk can receive more attention, and 

proper allocation of resources for malaria control in the area can be achieved (Gwitira et al., 2020). 

Disease mapping is a visual representation of the geographical locations of patients, presenting 

general information about the occurrence of the disease within a population through spatial 

epidemiological data. Based on the results of these maps, planning and resource allocation needs can 

be monitored at all levels of healthcare, and appropriate interventions can be designed and tailored to 

areas that require further investigation, as well as communities that need more research to identify 

the disease cases (Samat & Mey, 2017). In a study conducted in Burundi, one of the countries in Sub-

Saharan Africa, the results indicated that the northern regions of the country had a significantly higher 

risk of malaria compared to other areas. Based on the findings of this research, proposed GIS-based 

models for malaria risk mapping can significantly contribute to more informed decision-making and 

policy-making processes in planning for intervention and control of malaria risks. This, in turn, could 

lead to reducing the disease burden in the future and lowering vulnerability due to climate change 

(Hassaan, Abdrabo, & Masabarakiza, 2017). In a study conducted in Burkina Faso, West Africa, 

spatio-temporal analysis and prediction of malaria cases were performed using weather data and 

remote sensing. As a result of this study, an effective prediction model was developed using data 

obtained from detecting passive cases of the disease and using readily available and simple weather 

data. This analysis of malaria cases presents a powerful and forward-looking approach to identify and 

predict high-risk areas and periods of high disease transmission. It can also be utilized in the control 

and prevention of malaria (Bationo et al., 2021). In the effort to eliminate malaria, the National 

Malaria Control Program in Haiti, along with other international partners, implemented a campaign 

of interventions targeting high-risk communities exposed to malaria through evidence-based 

planning. A key component of this planning was the presentation of an up-to-date and endemic 

disease map along with seasonal characteristics of the country. This map was based on monthly case 

reports from 771 health centers across the country over a six-year period from 2014 to 2019. 

Additionally, a new modeling framework was introduced, using geostatistical modeling, to provide 

an estimation of the annual endemic pattern of malaria in Haiti (Cameron et al., 2021). 

Developing a disease risk map is an effective and efficient tool for monitoring disease transmission 

and efforts towards disease control. In another study conducted in Ghana, Africa, geostatistical 

analysis and the probability map of malaria infection in children under 5 years old were devised using 

disease prevalence data. The results of this study indicated significant associations between malaria 
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prevalence and residential location (urban/rural), age, use of indoor residual spraying, socioeconomic 

status, and maternal education level (Ejigu, 2020). 

In a study in Mozambique, East Africa, a spatial distribution map of malaria in children was created 

to design targeted and effective intervention methods for malaria control. The prevalence of malaria 

was found to be higher in rural areas, and the disease was increasing with the child's age while was 

decreasing with increasing household wealth index and maternal education level. Given the high 

prevalence of malaria in children in Mozambique, there is an urgent need for effective public health 

interventions. The risk maps generated in this study can be effectively used by malaria control 

program implementers to prioritize interventions in high-priority areas (Ejigu, 2020). 

The aim of this research was to investigate the possibility of aligning mathematical models' 

distribution with geostatistical maps and determining the percentage of clustered distribution of 

patients. Geostatistical maps typically represent the level of infected patients in unclear and non-

mathematical manner, but combining them with mathematical models, such as distribution indices, 

aids in better understanding and managing the disease. The main innovation of this article lies in the 

alignment of geostatistical maps with distribution indices. This type of modeling for disease 

distribution has been created for the first time in the world. 

 

Methods 

The study area for investigating the spatial distribution is located in the southern region of Iran, 

comprising the provinces of Fars, Kohgiluyeh and Boyer-Ahmad, Khuzestan, Bushehr, and 

Hormozgan (Figure 1). These provinces have a total area of approximately 295,607 square 

kilometers, constituting 18.2% of Iran's total land area. The total population of these provinces was 

recorded as 13,214,650 in the latest national census  in   2016  .These regions are connected to the 

Indian Ocean via the Oman Sea and the Persian Gulf. Factors such as humidity, vegetation cover, 

elevation, temperature, and water resources have an impact on the spread and distribution of malaria 

mosquitoes and the disease. These regions are susceptible to the expansion and dissemination of 

malaria due to these factors. To study the distribution of malaria in Iran, the data of malaria patients 

from 2016-2020, were first received from the Ministry of Health. The Ministry of Health workers had 

visited health centers and laboratories across the country during the 5 years (2016-2020) and 

confirmed the positive malaria cases. These data were organized in an Excel file, categorized by city 

and province. Next, the geographical coordinates (longitude and latitude) of all healthcare and 

medical centers in the country were inputted into the Surfer software to create a geostatistical map of 

malaria based on data anomalies. The analysis of this data was then conducted using the SPSS 

software to identify patterns and anomalies related to malaria distribution. 

Three types of distribution patterns have been identified (Figure 2). These patterns help in 

understanding the precise forms of disease distribution. 
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Figure 1. Geographical map of the studied area of southern Iran. 

 
Figure 2. Three spatial point patterns: random, regularly dispersed, and clustered (aggregated or 

cumulative), distributions (Southwood, 1978). 

 

 In an aggregated distribution pattern, individuals within a population are grouped together in various 

locations within that population. This type of pattern often suggests that there are localized factors or 

specific conditions that lead to the clustering of individuals in certain areas. 

In a regular distribution pattern, individuals are spaced at close and consistent intervals relative to 

others. This type of pattern implies that there is a uniform or systematic arrangement of individuals, 

often seen in situations where resources are evenly distributed or when there is competition for space. 

In a random distribution pattern, individuals are scattered in a haphazard and irregular manner within 

a population. This type of pattern suggests that there is no specific order or organization to the 

arrangement of individuals, and their placement appears to be entirely random within the population. 

To measure and study the distribution of malaria, five indices were used: Taylor index (Taylor, 1984), 

Iwao's index (Southwood, 1978), K index (Southwood, 1978), variance-to-mean ratio (Poole, 1974), 

and Morisita index (Poole, 1974) (Table 1).  

In the context of the Taylor relationship between population mean and variance, a regression equation 

(Table 1) was established, and the slope of this equation (b) was used as the Taylor index for 
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estimating population dispersion. This index is commonly employed as a statistical tool to illustrate 

the relationship between the population mean and variance, providing valuable insight into population 

distribution. Values smaller than, equal to, and greater than one b respectively indicate uniform, 

random and aggregated (clustered) dispersions. 

In order to estimate the Iowa index between the mean (m) and the mean bulk index (m*), a regression 

relationship was established (Table 2), and its slope (β) was used as the Iowa index. Values smaller 

than, equal to, and greater than one  β indicate uniform, random and aggregated dispersions, 

respectively. 

To test the significance of the difference between the coefficients b (Taylor) and β (Iwao) with zero, 

the values of F and P were obtained from regression equations. To test the difference between the 

coefficients of Taylor and Iwao with one, equation t (equation 1) with degrees of freedom n-1 was 

used. 

(1)      t = (Slope − 1)/SEslope 

In this equation, Slope and  SEslope  represent the coefficients of Taylor or Iwao and their standard errors 

in the regression equations (Tsai, Wang, & Liu, 2000) . 

 

Table 1: Estimator formula of distribution indexes. 
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sampling units that have 

more than X  

 The slope values of Taylor coefficient (b); The slope values of Iwao coefficient (β) 

 

Results  

 

The distribution pattern of the disease in southern Iran 

Taylor´s Law: The statistics obtained from establishing a regression relationship between the 

logarithm of variance and the population mean (Taylor's law) in different quadrats are presented in 

Table 2 for investigating the distribution of malaria. The results of the regression analysis showed 

that in the years 2016 and 2017, the F value at the five percent significance level was consistently 

significant, and the coefficient of determination of the regression equations was relatively high. 

However, the F value was not significant for the years 2018, 2019, and 2020. The results indicate that 

the values of the Taylor's coefficient (b) for the years 2016 and 2017 were 1.02 and 1.07, respectively, 

as the calculated t-values were greater than the critical t-value. The null hypothesis of no difference 

between the b values and 1 is rejected, indicating a cumulative distribution of malaria in 2016 and 

2017. Additionally, the values of the Taylor's coefficient (b) for the years 2018, 2019, and 2020 were 

0.90, 0.82, and 0.78, respectively, and as the calculated t-values were less than the critical t-value, the 

null hypothesis of no difference between the b values and 1 is accepted, suggesting a random 

distribution of malaria in the years 2018, 2019, and 2020. 

 

.Table 2. Regression statistics for Taylor's method for five years of malaria cases in southern 

Iran 

T F R2 b±SE Year 

3.79* 108.43* 0.904 1.02±0.022 2016 

5.19* 152.19* 0.938 1.07±0.012 2017 

1.11 12.51 0.882 0.90±0.017 2018 

0.91 8.2 0.824 0.822±0.025 2019 

0.58 4.94 0.792 0.780±0.011 2020 

 

Iwao's method: The regression statistics obtained from the Iwao model are presented in Table 3. The 

results of the regression relationship between the mean population and the actual population showed 

that the values of β equal to 0.91, 0.98, 0.89, 0.79, and 0.71 correspond to the years 2016, 2017, 2018, 

2019, and 2020, respectively. None of these coefficients showed a significant difference from 1, 

indicating that according to the Iwao's coefficient, the distribution of malaria patients in the southern 

region of Iran is random. 

In comparison with the Taylor model, the Iwao model yielded more consistent regression coefficients 

with a higher R-squared value (R2)  and significantly lower standard errors of the regression 

coefficients. Therefore, it can be concluded that the Iwao index is more effective than the Taylor 

index in estimating the distribution coefficients of malaria patients in the five years studied in the 

southern region of Iran. Moreover, considering the data's variance being closer to the mean, the Iwao 

coefficient is a more appropriate indicator for estimating the distribution of malaria patients' 

population. 

 

Table 3. Regression statistics for Iwao's method for five years of malaria cases in southern Iran . 

T F R2 ±SE β year 

1.25 14.18 0.931 0.914±0.004 2016 

1.49 15.75 0.944 0.984±0.004 2017 
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0.85 8.29 0.909 0.890±0.008 2018 

0. 68 4.11 0.878 0.799±0.011 2019 

0.34 2.28 0.869 0.716±0.015 2020 

 

Based on the discrepancies between the Taylor and Iwao's coefficients in identifying the pattern of 

malaria cases distribution in the years 2016 and 2017, the percentage of agreement in the distribution 

of malaria cases for the five years of 2016-2020 is presented in Table 4. Over the five years, there 

was not a significant difference in the percentage of agreement with cumulative or random 

distributions. In the distribution of malaria patients, the percentage of agreement for the years 2016 

to 2020 was lower with the cumulative distribution compared to the random distribution. These 

findings are consistent with the Iwao's index, indicating a random distribution of malaria patients 

during these years and confirm the error of the Taylor's index for the years 2016 and 2017. 

Additionally, the three indices, Morisita, Kappa, and variance-to-mean ratio, indicated that the 

distribution of malaria patients in southern Iran is random . 

 

Table 4. Percentage of agreement in the frequency of malaria patients' distribution over the 

five years, 2016-2020, in southern Iran . 

Dispersion indices 

Morisita Kappa Variance-to-mean  

Cumulative Random Cumulative Random Cumulative Random Year 

13 87 15 85 17 83 2016 

16 84 20 80 22 78 2017 

0 100 9 91 5 95 2018 

0 100 0 100 0 100 2019 

0 100 0 100 0 100 2020 

 

 

Discussion 

 

Analysis of malaria patients' dispersion maps 

Maps of malaria patients' distribution in the year 2016-2020 in southern Iran are shown in Figures 3-

7. Based on the distribution map, two clusters of cases are observed in the geographic latitudes 28, 

29, and 30, and longitudes 51, 52, and 53 for the year 2016. Additionally, three clusters of cases are 

observed in the geographic latitudes 27, 28, 29, 30, and 30.5, and longitudes 50, 51, 52, and 53 for 

the years 2017 and 2018. These clusters represent areas with higher concentrations of malaria patients . 

In the years 2019 and 2020, the distribution of malaria patients is confirmed to be random, and no 

clustering is observed in Figures 4 and 5. Considering the Taylor coefficient (b), it can be concluded 

that the distribution of patients in the years 2018, 2019, and 2020 is consistent with the random 

pattern, as indicated by the spatial statistical maps. However, in the years 2016 and 2017, similar to 

the spatial maps, the pattern of distribution shows clustering, indicating the sensitivity of the Taylor 

coefficient to the clustering of malaria patients. 
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Figure 3. Distribution map of malaria patients in the south of Iran in 2016. (•) Foreign patients 

infected with malaria and (*) Iranian patients infected with malaria 
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Figure 4. Distribution map of malaria patients in the south of Iran in 2017. (•) Foreign patients 

infected with malaria and (*) Iranian patients infected with malaria 

 
Figure 5. Distribution map of malaria patients in the south of Iran in 2018. (•) Foreign patients 

infected with malaria and (*) Iranian patients infected with malaria 
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Figure 6. Distribution map of malaria patients in the south of Iran in 2019. (•) Foreign patients 

infected with malaria and (*) Iranian patients infected with malaria 

 
Figure 7. Distribution map of malaria patients in the south of Iran in 2020. (•) Foreign patients 

infected with malaria and (*) Iranian patients infected with malaria 

 

The Iwao's index also suggests a random distribution of patients despite the two population means 

occurring in these latitudes. The percentages of agreement of the disease distribution with the 
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Morisita, the coefficient of variation, and the K index support the randomness and clustering of 

malaria distribution in accordance with the spatial patterns. The highest level of clustering for the 

disease is observed in the year 2017, with an average of around 20% on the map, which correlates to 

a great extent with the wave patterns on the map. 

The highest percentage of random distribution is indeed observed in the years 2019 and 2020, which 

is 100% as shown in Figures 4 and 5. Most malaria cases in these maps are concentrated in the 

southeast of Iran, with fewer cases reported in the west and south. Moreover, the majority of malaria 

patients in Iran are immigrants from neighboring countries (Azizi et al., 2020). They settled 

collectively at the aforementioned latitudes of the regions in Iran. In 2016, 95% of the cases, in 2017, 

95% of the cases, in 2018, 93% of the cases, in 2019, 91% of the cases, and in 2020, 100% of the 

cases were attributed to foreign nationals in these regions. It seems that one of the reasons for the 

cumulative distribution points in the map is that malaria case  finding in Iran is more based on passive 

case detection (PCD) (Azizi et al., 2020). In passive case detection, detecting malaria cases is based 

on patients who usually have symptoms e.g.: fever, and seek care to health centers. As a result, it 

creates an accumulation point in a health and treatment centers. Passive case detection in all 

transmission settings is very critical for malaria surveillance, especially in elimination settings and 

disease-free areas to prevent re-establishment of malaria transmission (World Health Organization, 

2018).  

In passive surveillance, a health sector receives reports that are collected from hospitals, clinics, 

public health units, or other health centers. Passive case surveillance is a relatively inexpensive 

strategy to cover large areas, and provides critical information for community health monitoring. 

However, because passive surveillance depends on individuals in different institutions to provide 

data, it is difficult to control the quality and timeliness of the data (Nsubuga P, 2006). But the most 

important disadvantage of the passive case detection method is that not all cases of disease are 

reported, which can be problematic (Raeisi et al., 2013). 

According to Figure 2, three dispersion patterns, random, clustered and uniform are depicted. Based 

on the results and the disease map obtained in 2016, Figure 3 of the disease map closely resembles a 

clustered dispersion pattern shown in Figure 2. Additionally, a significant portion of the map appears 

to be randomly scattered. Moreover, the dispersion type in Figure 4 is such that is closely resembles 

a clustered dispersion pattern. 

The study of the density waves in the scattering pattern of the year 2016, as shown in Figure 3, 

indicates that the waves in regions with a geographical latitude of 28 to 32 and a geographical 

longitude of 54 to 58, have divergence and lack the ability to condense to create an aggregative state. 

In the geographical latitude of 31 to 32 and the geographical longitude of 49 to 58, there is a complete 

absence of any malaria cases in the form of continuous strip, which could possibly be due to the 

mountainous nature and lack of migratory population in this area. 

The highest density wave, forming the aggregation pattern, is observed at the geographical latitude 

of 29.5 and 27.5, and the geographical longitude of 52 to 53. Cumulative foci of waves with lower 

density are indicated at the geographical latitudes of 26.5, 27, 27.5, and 28.5, and the geographical 

longitude of 50.5, 54.5, 55, 56 and 57. Generally, the results of the analysis of the density waves 

indicate that the geographical latitudes of 26, 28, and 30.5 are the entry points of the converging 

disease waves to create foci of aggregation. 

The study of density waves in the distribution pattern in 2017, as shown in Figure 4, differs from 

2016. The number of inputs for the formation of the cumulative distribution pattern is greater than in 

2016. Convergent wave inputs from latitudes 26 to 32 have shown significant growth, indicating an 

influx of more patients from these areas. Convergent foci waves with high density are at the latitudes 

29 to 30 and longitudes 50 and 50.5. Additionally, foci with low density are formed at latitudes 25, 

26.5, 27, and 28 and at longitudes 52.5, 53, 54, 54.5, 56.5 and 57. 

The analysis of wave formations creating the distribution pattern in 2018, as depicted in Figure 5, 

indicates a decreasing wave density pressure. Health networks in the southern regions of Iran, while 

monitoring the disease, have taken steps to control, surveillance, and treat malaria patients. Moreover, 
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the examination of the waves shows a reduction in the number of inputs leading to the formation of 

cumulative foci. The number of low-density foci has been decreasing rapidly compared to 2016 and 

2017. Disease density waves for the formation of cumulative foci have shown less convergence, and 

the importance of health surveillance measures in reducing density waves is clearly evident, and 

successfully observed. 

Furthermore, based on the dispersion models in Figure 2 and the correspondence with Figures 5, 6 

and 7, the dispersion of individuals appears to be scattered and random. The distribution of individuals 

with irregular and non-clustered spacing is observed in all the mentioned figures. In Figure 5, the 

clustering density was low in some areas and bore a closer resemblance to random pattern. 

According to Figure 6, the study of density waves in 2019 shows a significant difference compared 

to the years 2016 to 2018. Convergent wave inputs for the formation of cumulative foci have 

decreased drastically, and the number of high-density foci has significantly reduced. The dispersion 

pattern waves have rapidly diverged. The number of malaria patients has decreased, emphasizing the 

increased and more noticeable control and surveillance of the disease. 

The examination of the wave formations creating the distribution pattern of malaria in 2020, as shown 

in Figure 7, indicates that the convergent waves for creating both large and small cumulative foci 

have decreased. Moreover, convergent waves for the creation of accumulation distribution patterns 

have transformed into divergent waves for random dispersion. The successful surveillance and control 

of malaria by the health networks showcased the Ministry of Health’s efforts in 2020 to effectively 

prevent critical foci. 

 

Conclusions 

The analysis of malaria patients' dispersion maps alone can provide valuable insights into the 

clustering of malaria cases and help researchers and health authorities in disease control. However, 

combining these results with mathematical models and determining the percentage of clustering or 

randomness enables the development of precise management tools. 

The findings obtained from this study can be utilized for various purposes, such as optimizing drug 

distribution, enhancing the control of disease vectors, and identifying potential outbreak hotspots in 

the future. It is recommended to continue monitoring the spatial distribution of the parasite in southern 

Iran and also track the improvement status of identified patients using geostatistical methods. These 

approaches can provide valuable information for better disease management and prevention strategies 

in the region. 
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