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Abstract 

Time series is a statistical tool that is used for predicting future trends based on previous 

trends. In this study, forecasting of three weather stations of the UK presented. For that 

purpose, several methods are applied to the weather station data and the best fitting model 

is chosen for future forecasting. For the stationarity, informal (ACF and PACF) and formal 

(ADF) methods were presented. A well-known technique, Box-Jenkins (ARIMA), has been 

implemented. The evaluation for ARIMA (Auto Regressive Integrated Moving Average) 

model fitting and forecasting has been done through R software using various packages. 

Based on the inspection of the ACF, PACF autocorrelation plots, the most appropriate 

orders of the ARIMA models are determined and evaluated using the AIC-criterion.  In 

contrast to the respective models for the 1station, ARIMA (2,0,1) and (0,1,1) for Cardiff and 

ARIMA (2,0,2) and (0,1,1) for Cambridge, respectively, are produced for the maximum and 

lowest temperatures at these stations. The annual as well as monthly analysis has been 

done for the validation of model. The result showed a good accordance of the projected 

temperature with real time data. Moreover, the ARCH/GARCH forecasting method was 

also presented on all three datasets. Additionally, the comparison of both ARIMA and 

ARCH/GARCH paradigms are presented. At the end of the study, drew a conclusion and 

discussed the further study gap as well.   

Keywords ARIMA modeling, Model Identification, ARCH/GARCH model. 

Introduction 

Time series analysis serves two main purposes: understanding random mechanisms and 

forecasting future quantities based on historical data. Rainfall, monthly average 

temperature, and relative humidity significantly influence the likelihood of drought, 

impacting agriculture and economics. Weather parameter prediction aids in disaster 

preparedness. Linear transfer functions model relationships in time series analysis, applied 

to economic forecasting and quality control. Time series data comprises repeated 

measurements over time, from patient health monitoring to business reports on stock prices 

and meteorological records of wind speeds, temperature extremes, and rainfall. These 

diverse datasets inform decision-making across various domains (Chung et al., 2011). 
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Climate change significantly impacts water resources. Predicting weather factors like 

precipitation, temperature, and humidity aids decision-making and risk management, 

optimizing water resource utilization. These variables profoundly affect hydrological 

cycles, crop production, and overall water usage, especially in agriculture, human 

endeavors, and environmental sustainability (Machiwal & Jha, 2006). 

Time series, a sequential data collection, leverages human ability to perceive patterns. 

Tasks include content query, anomaly detection, prediction, clustering, and classification. 

Initially theory-driven, recent research aligns with practical applications in economics, 

security, genetics, medicine, and hydrology. Time series data mining illuminates’ diverse 

real-world challenges, reflecting its evolving relevance (Esling & Agon, 2012). 

Classifications of Time Series 

Time series classifications hinge on criteria like time length, memory, and stationarity. 

Equidistant series have constant period lengths, like daily rainfall, while non-equidistant 

ones, like stock prices, vary. Memory distinguishes between long and short-term, affecting 

autocorrelation. Stationarity categorizes series as constant or varying in statistical 

properties over time. Forecasting in time series analysis entails model identification and 

future prediction, often requiring data to be stationary for accurate forecasts (Kirchgässner 

et al., 2012). 

Components of Time Series 

Time series exhibit four key components of variation: 

• Trend: Long-term movements, like price trends in cold drinks. 

• Seasonal variation: Predetermined patterns, seen in stock prices and exchange rates. 

• Cyclic variation: Economic cycles, such as recessions. 

• Random variation: Unpredictable events like floods or strikes. 

These components combine mathematically in either additive or multiplicative formats. 

Multiplicative Model: 

X(t) = T(t) × C(t) × S(t) × R(t) 

Additive model: 

X(t) = T(t) + C(t) + S(t) + R(t) 

The multiplicative and Additive model represents time series data as the product of four 

components: 

T(t): Trend component representing long-term movements. 

C(t): Cyclical component depicting fluctuations due to economic cycles. 

S(t): Seasonal component capturing variations based on predetermined patterns. 

R(t): Random or irregular component representing unpredictable fluctuations. This model 

accounts for the interaction of these components in determining the observed values of the 

time series at time t. 

Autocorrelation Function (ACF)  

Autocorrelation Function (ACF) assesses the relationship between an observation at the 

current time and those at previous time points. It helps determine if the observed time series 

is random or exhibits a pattern. Additionally, ACF aids in identifying whether a Moving 
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Average (MA) model can be applied to the time series and, if so, the appropriate order of 

the model. 

Partial Autocorrelation Function (PACF) 

The correlation between observation at two-time spots given that we consider both 

observations are correlated to observations at other time spots. PACF provides us: Is it 

possible the modelling of AR model through observed time series? If yes, what will be the 

order? 

Augmented dickey fuller (ADF) Test 

It is a commonly used statistical test for the stationarity of the time series data. It belongs 

to the category of tests known as unit root test, this method is also check whether the data 

is stationary or not. 

Arima Model 

ARIMA is used for the modelling and forecasting of the time series data. ARIMA can 

measure the relationship between values in a time series data by using AR and MA 

approach. For the forecasting our time series data must be stationary. If time series data is 

stationary, then will take initial differencing to reduce the non-stationarity. By applying the 

method of a difference, the ARIMA model stabilizes time series data. 

Model identification. 

For model identification autocorrelation is very important in time series paradigm. Box-

Jenkins technique recommend us model identification of ARIMA through ACF and PACF 

value with required differencing.  Model selection criteria are guidelines that are used to 

choose a statistical model from a group of models based on observable data. Among the 

criteria for selecting a model are: 

• Akaike information criteria (AIC) 

• Bayesian information criteria (BIC) 

Diagnostic checking 

For selecting an appropriate modelling required Diagnostic, that measure a lack of fit in 

time series model through Ljung and Box (LB). It is a standard tool for identification of 

models before forecasting the data. 

Objectives of study 

• ARIMA models will be developed for the three temperature stations across the 

United Kingdom. 

• Adhere to the ARCH/GARCH model specifications. 

• To conduct short-term temperature forecasting on an annual basis at three specific 

sites within the United Kingdom. 

Review of the Literature 

Time series analysis involves systematically collecting data at regular intervals over a 

defined period. It requires extensive data to ensure reliability and accommodate seasonal 

variations. This method enables forecasting by leveraging past data to predict future trends, 

ensuring robustness in identifying patterns and trends while minimizing the impact of 

outliers (Brown, 2004). 

Organizations leverage time series analysis to understand temporal patterns, employing 

data visualizations to discern seasonal trends. Time series forecasting aids in predicting 

future events and changes, enhancing predictive analytics. Non-stationary data, common in 
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banking and retail, benefit from this analysis. In meteorology, time series analysis is pivotal 

for weather forecasting and climate change projections, utilized across various sectors and 

data types (Flores et al., 2012). 

During the last decades, dengue viruses have spread throughout the Americas region, with 

an increase in the number of severe forms of dengue. The surveillance system in 

Guadeloupe (French West Indies) is currently operational for the detection of early 

outbreaks of dengue. The goal of the study was to improve this surveillance system by 

assessing a modelling tool to predict the occurrence of dengue epidemics few months ahead 

and thus to help an efficient dengue control (Gharbi et al., 2011).  

The literature underscores climate change's impact on water resources, advocating for 

weather forecasting to inform decision-making. Key factors like precipitation, temperature, 

and humidity profoundly affect hydrology, agriculture, and economies. Time series 

analysis aids in understanding random mechanisms and forecasting. Linear transfer 

functions facilitate modeling for various practical applications, including economic 

forecasting and quality control (Cheema et al., 2011). 

Various studies employ statistical models to analyze temperature and precipitation patterns 

across different regions. Techniques like ARIMA and SARIMA are utilized for short-term 

forecasting and drought prediction. These methods aid in climate zoning and anomaly 

detection, crucial for disaster preparedness and resource management. Studies highlight 

climate fluctuations and the significance of stochastic modeling for agricultural and water 

resource management (Lihua et al., 2010). 

Material and Methods 

Box-Jenkins ARIMA models: Box-Jenkins ARIMA models forecast future data points of 

a single time-dependent variable like temperature. Data must be stationary. Analysts 

eliminate variations and seasonality using moving averages, seasonal differences, and 

autoregressive terms. These models are valuable for understanding and predicting time 

series data accurately (Box et al., 2015). 

The study utilizes weather variables from Abadeh Station, spanning crop years 1989–1990 

to 2008–2009. After organizing distinct time series for precipitation, mean temperature, 

and relative humidity, the data are prepared for modeling. Time series analysis employs 

techniques like the (p,d,q) model, where p, d, and q represent autoregressive, differencing, 

and moving average values, respectively. Model selection involves assessing 

autocorrelation and partial autocorrelation diagrams, ensuring suitability and accuracy. If 

the time series is seasonal, a two-dimensional approach is adopted (Bollerslev, 1988). 

The ARCH and GARCH models, short for autoregressive conditional heteroskedasticity 

and generalized autoregressive conditional heteroskedasticity, address volatility in time 

series data, crucial for risk analysis and financial decisions. Widely utilized, especially in 

R programming, these models provide measures like 5-standard deviation, aiding in 

portfolio selection and derivative pricing within financial methodologies (Liu, 2009). 

Various criteria are established to compare models, ranging from prediction error to 

statistics derived from residuals. AIC, BIC, and SBC assess model recognition, while 

methods like MPE and MSE evaluate forecasting error. The best model minimizes these 

statistics. AIC is favored for ARIMA models, proven effective in analyzing precipitation, 

temperature, and humidity interactions using R programming (Jha et al., 2016). 

Model Testing and Result Analysis 

Comparative Analysis of Weather Conditions Across UK Cities 
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The initial stage in modeling time index data involves transforming non-stationary series 

into stationary ones. This step is crucial as many statistical and econometric methods rely 

on stationarity assumptions, enabling their application only to stationary time series. 

Weather Condition Bradford Station 

 

Figure 1: Time Series Plot of the Weather Condition Bradford Station. 

Weather Condition Cambridge Station 

 

Figure 2: Time Series Plot of the Weather Cambridge Station. 

Weather Condition Cardiff Station 

 

Figure 3: Time Series Plot of the Weather Cardiff Station. 

Based on Figures 1, 2, and 3, it's evident there's no discernible trend in the time series, 

though some seasonal effects are apparent. Hence, we conclude the time series is stationary. 

To confirm, we conduct an Augmented Dickey-Fuller Test for stationarity. 
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Table.1: Augmented Dickey- Fuller Test three different station of the UK 

Station Dickey-Fuller 

 

Lag Order P-value 

Bradford -11.32 9 0.01 

Cambridge -9.5726 9 0.01 

Cardiff -10.303 9 0.01 

 

In Table 1, Augmented Dickey-Fuller Tests were performed on three UK stations 

(Bradford, Cambridge, Cardiff) to evaluate stationarity. Results indicate low p-values 

(0.01), signifying significance. With p-values below the 0.05 threshold, we affirm that each 

station's time series is stationary, indicating stable and consistent data behavior. 

ARIMA model:  

ARIMA models analyze Time Series data by combining Auto Regressive (AR) and Moving 

Average (MA) components. The AR part predicts based on past values, while the MA part 

accounts for residual influences, capturing sudden variations or "shocks" in the data. 

 

Plotting ACF and PACF 

 

Figure 4: ACF and PACF plots of three cities of the UK 

In Figure 4, correlogram analysis of Bradford station indicates an AR model, with ACF 

plot tailing off and PACF cutoff at lag 2, suggesting AR (2). For Cardiff and Cambridge 

Stations, similar patterns suggest AR (2). Additionally, ACF cutoff at lag 1 hints at MA 

(1). While spikes exist beyond the threshold, simplicity favors lower lags and significant 

spikes, like at lag 1. 

Table.2: Estimated SARIMA model three different station of the UK 
 

Bradford Station Cambridge Station Cardiff Station 

Coefficients ARIMA (1,0,0) 

(2,1,0) 

S. E ARIMA 

(2,0,2) (0,1,1) 

S. E ARIMA 

(2,0,1) (0,1,1) 

S. E 
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AR (1) 0.3255 0.031

0 

1.6799 0.0179 1.4480 0.0453 

AR (2) 
  

-0.9486 0.0176 -0.5689 0.0302 

SAR (1) -0.7199 0.031

7 

    

SAR (2) -0.3140 0.032

1 

    

MA (1) 
  

-1.3054 0.0435 -0.8522 0.0474 

MA (2)   0.5971 

 

0.0388 

 

  

SMA (1)   -0.8730 0.0243 -0.8762 0.0176 

Variance 3.35 4.253 3.793 

 

Table 2 presents estimated SARIMA models for three UK stations. Bradford Station's 

model indicates ARIMA (1,0,0) (2,1,0), while Cambridge and Cardiff Stations suggest 

ARIMA (2,0,2)(0,1,1). Significant coefficients include AR (1) for Bradford, AR(2) for 

Cambridge, and MA(1) for Cardiff. Variance values are 3.35, 4.253, and 3.793, 

respectively. 

                          Table.3: Information Criteria of three ARIMA models. 

Model AIC AICc BIC 

ARIMA (1,0,0) (2,1,0) 3803. 3803.9 3823.23 

ARIMA (2,0,2) (0,1,1) 4037.93 4038.02 4066.98 

ARIMA (2,0,1) (0,1,1) 3932.7 3932.77 3956.92 

 

Table 3 displays the information criteria for three ARIMA models. Lower values of AIC 

(Akaike Information Criterion), AICc (corrected AIC), and BIC (Bayesian Information 

Criterion) indicate better model fit. The ARIMA (1,0,0)(2,1,0) model for Bradford has the 

lowest AIC, AICc, and BIC values, suggesting it provides the best goodness of fit among 

the  

      Table.4: Estimated SARIMA models accuracy. 

Model ME RMSE MAE MPE MAPE MASE 

ARIMA (1,0,0) (2,1,0) 0.0010 1.8159 1.4044 -5.2748 19.5996 0.7658 

ARIMA (2,0,2) (0,1,1) -0.0143 2.0436 1.5161 8.9244 28.9218 0.7571 

ARIMA (2,0,1) (0,1,1) 0.0565 1.9311 1.4542 -1.5504 11.7526 0.6514 

 

Table 4 provides accuracy metrics for the estimated SARIMA models. ME (Mean Error), 

RMSE (Root Mean Square Error), MAE (Mean Absolute Error), MPE (Mean Percent 

Error), MAPE (Mean Absolute Percent Error), and MASE (Mean Absolute Scaled Error) 

evaluate model performance. Lower values indicate better accuracy. The ARIMA 

(2,0,1)(0,1,1) model exhibits the lowest RMSE and MAE, suggesting it has the highest 

accuracy among the three models. 

Five years of weather forecasts for three stations in the UK. 
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Figure 5: Forecasted Temperature three Weather Station UK. 

Figure 5 illustrates the combined forecasted weather temperatures for the next five years 

across three UK stations. It compares the forecasted temperatures for each city over the 

next five years with their respective temperatures recorded during the same seasons in 

previous years. This comparison provides insights into the expected weather trends and 

variations across the selected stations. 

ARCH Model 

An ARCH model is very similar to ARIMA, but its CH component models the 

previous squared residuals at each previous point in time. We are using the term “volatility” 

here as a proxy for variance or squared residuals. The CH model predicts a future squared 

residual as part of the wider ARCH model. Below we can illustrate the two components 

slightly differently. 

 

ARCH: This is the basic expanded AR component for illustration. 

           

  Table.5: ARCH Effect check all three models. 

Model LM test Rank-based Test P-value 

ARIMA (1,0,0) (2,1,0) 24.298 38.955 Less < 0.05 

ARIMA (2,0,2) (0,1,1) 28.473 26.29 Less < 0.05 

ARIMA (2,0,1) (0,1,1) 23.268 50.57 Less < 0.05 

Table 5 evaluates the presence of ARCH (Autoregressive Conditional Heteroskedasticity) 

effects in all three models using LM and Rank-based tests. P-values less than 0.05 indicate 
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significant ARCH effects. All models exhibit significant ARCH effects, suggesting 

volatility clustering in the residuals. 

Conditional Heteroskedasticity 

From our studies of the necessary assumptions of OLS regression, we will review the 

concept of heteroskedasticity. 

 

Garch Model 

Generalized Autoregressive Conditional Heteroscedasticity, or GARCH, is an extension of 

the ARCH model that incorporates a moving average component together with the 

autoregressive component. 

ht = ω + ∑qiαie2t − i + ∑p1βiht − iht = ω +∑qiαie2t − i + ∑p1βiht − i 

where htht is variance at time t, et − iet − i is the model residuals at time t − i. 

   Table. 6: Estimated Coefficients GARCH effects in UK Weather Stations 

UK Cities Bradford Station Cambridge Station Cardiff Station 

 Estimation Estimation Estimation 

GARCH sGARCH (1,1) 

ARFIMA (1,0,1) 

sGARCH (1,1) 

ARFIMA (1,0,1) 

sGARCH (1,1) 

ARFIMA (1,0,1) 

Mu 12.224 13.655 
 

ar1 0.712 0.699 0.95 

ma1 0.347 0.328 0.11 

omega 0.206 0.012 0.02 

alpha1 0.002 0 0.00 

beta1 0.972 0.999 1.00 

 

Table 7 presents the estimated coefficients for GARCH models across three different UK 

stations: Bradford, Cambridge, and Cardiff. The coefficients include Mu (mean), ar1 

(autoregressive term), ma1 (moving average term), omega (constant), alpha1 (ARCH 

term), and beta1 (GARCH term). These coefficients characterize the volatility dynamics of 

the weather data in each station. 

Table. 7: Test Statistics SGARCH model three different station of the UK 

UK Cities Bradford Station Cambridge Station Cardiff Station 

GARCH sGARCH(1,1) 

ARFIMA(1,0,1) 

sGARCH(1,1) 

ARFIMA(1,0,1) 

sGARCH(1,1) 

ARFIMA(1,0,1) 

 Parameters Std. 

Error 

T P Std. 

Error 

T P Std. 

Eror 

T P 

Mu 0.36 33.932 0 0.648 21.061 0 
   

ar1 0.022 33.037 0 0.037 19.153 0 0.01 86.26 0.00 
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ma1 0.024 14.4 0 0.04 8.276 0 0.03 3.37 0.00 

omega 0.038 5.446 0 0.037 0.324 0.7 0.03 0.61 0.54 

alpha1 0.006 0.335 0.737 0.003 0 1 0.00 0.00 1.00 

beta1 0.004 218.79 0 0 20042 0 0.00 18528.00 0.00 

 

Table 8 displays test statistics for SGARCH models across three UK stations: Bradford, 

Cambridge, and Cardiff. Parameters include Mu (mean), ar1 (autoregressive term), ma1 

(moving average term), omega (constant), alpha1 (ARCH term), and beta1 (GARCH term). 

Test statistics such as standard error, t-values, and p-values assess the significance of each 

parameter. Lower p-values indicate greater significance, suggesting significant effects on 

volatility dynamics in each station. 

             Table. 8: Model Selection Criteria SGARCH model 

 
Bradford Cambridge Cardiff 

AIC 4.926 5.2448 5.7753 

BIC 4.9495 5.2959 5.8009 

Shibata 4.926 5.2445 5.7753 

Hannan-Quinn 4.9348 5.2649 5.7851 

 

Table 8 presents model selection criteria, including AIC (Akaike Information Criterion), 

BIC (Bayesian Information Criterion), Shibata, and Hannan-Quinn scores, for SGARCH 

models across three stations: Bradford, Cambridge, and Cardiff. Lower values indicate 

better model fit. These criteria aid in selecting the most suitable SGARCH model for each 

station. 

Table.9: Forecasted SGARCH models accuracy 

UK Cities ME RMSE MAE MPE MAPE MASE ACF1 

Bradford Station -0.721 2.172 1.856 -

15.411 

21.545 0.399 0.613 

Cambridge 

Station 

0.7949 2.1415 1.5767 6.249 11.303

6 

0.0705 0.8576 

Cardiff Station -0.021 2.331 1.629 Undfin

e 

Undfin

e 

0.765 0.002 

 

Table 9 presents forecasted accuracy metrics for SGARCH models in three UK cities. 

Bradford, Cambridge, and Cardiff. Metrics include ME (Mean Error), RMSE (Root Mean 

Square Error), MAE (Mean Absolute Error), MPE (Mean Percent Error), MAPE (Mean 

Absolute Percent Error), MASE (Mean Absolute Scaled Error), and ACF1 (Autocorrelation 

of Residuals at Lag 1). These metrics assess the SGARCH models' performance in volatility 

prediction for each city.    

 Table. 10: Adjusted Pearson Goodness-of-Fit Test of SGARCH models 

 
Bradford Station Cambridge Station Cardiff Station 

Group Statistic P-value Statistic P-value Statistic P-value 

20 21.27 0.32 13.33 0.82 178.70 0.00 

30 29.79 0.42 25.03 0.68 207.50 0.00 
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40 43.77 0.28 28.95 0.88 247.00 0.00 

50 41.19 0.78 44.63 0.65 255.50 0.00 

Elapsed 0.71653 
 

0.32191 
 

0.51142 
 

 

Table 10 presents the Adjusted Pearson Goodness-of-Fit Test results for SGARCH models 

at three UK stations: Bradford, Cambridge, and Cardiff. The table includes statistics and p-

values for various group sizes (20, 30, 40, and 50). Lower p-values indicate better model 

fit, suggesting the adequacy of the SGARCH models in capturing volatility dynamics at 

each station. 

 

Figure 6: Forecasted Weather Series with Unconditional Sigma: Bradford. 

 

 

Figure 7: Forecasted Weather Series with Unconditional Sigma: Cambridge. 
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Figure 8: Forecasted Weather Series with Unconditional Sigma: Bradford. 

In Figure 6, the forecasted weather series with unconditional sigma for Bradford shows a 

downward trend. Similarly, Figure 7 depicts forecasted downward trends for unconditional 

sigma in Cambridge. Figure 8 also displays forecasted downward trends for unconditional 

sigma in Cardiff. 

Conclusion 

The time domain method stands as a crucial tool in analyzing financial time series, notably 

in forecasting using ARIMA-ARCH/GARCH models. ARIMA, while adept at linear 

analysis, lacks immediacy in reflecting recent shifts, necessitating frequent parameter 

updates with new data. Its unconditional variance remains static, requiring series 

stationarity, often through transformations like log conversion. 

Complementing ARIMA, ARCH/GARCH assesses series volatility, effectively modeling 

ARIMA's noise term. By integrating current data, it calculates conditional variances, 

facilitating precise future forecasts. Mixed-model forecasting intervals are narrower than 

ARIMA alone, enhancing accuracy. 

ARCH and GARCH models find broad application, notably in finance, where risk 

assessment plays a pivotal role in decision-making. In asset pricing, portfolio optimization, 

and risk management, understanding the interplay between risk and return is paramount. 

This paper underscores the significance of robust risk measurement methods, providing a 

foundation for informed economic decisions. Through meticulous analysis, ARCH and 

GARCH models offer a statistical framework for testing and exhibiting various asset 

pricing and portfolio theories. 

Recommendations 

In order to validate SDSM effectively, it's imperative to consider additional parameters 

such as precipitation, pressure, solar radiation, and relative humidity. This comprehensive 

approach ensures a thorough analysis of the model's performance and enhances its 

predictive skills. Calculated biases from this study offer valuable insights for evaluating 

future scenarios generated by the model, extending the analysis to include maximum 

temperature as well. 
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